Home and building automation system

Data processing: generic control systems or specific application – Specific application – apparatus or process – Mechanical control system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S048000, C236S04600F

Reexamination Certificate

active

06263260

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a process for optimised control of a home and building automation system by way of software and sensors for monitoring persons, where the automation system, for energy saving and comfort improvement purposes, triggers actuators for installations or groups of installations as required. The invention also concerns an automation system for performance of the process and its application.
Home and building automation systems have already been proposed and implemented in many forms with a view to improving comfort. Government objectives and increasing environmental awareness contribute to the generally growing need to reduce energy consumption in order to protect global resources.
As early as the beginning of the 80's, the cooling and heating power of an air-conditioning system could be influenced in individual rooms in terms of comfort and energy in that an energy control system triggered by presence sensors was used, for example that described in U.S. Pat. No. 4,407,447. When the presence of a person in a room is according to this patent specification the temperature is adjusted from an uncontrolled room temperature to a prespecified nominal temperature by the supply of corresponding warm or cold air. When this person leaves the room, the air supply is cut off again and hence the energy consumption as a whole reduced. This system thus responds directly to direct requirements caused by the presence of at least one person, but has the disadvantage that in regard to the comfort system it has an inherent inertia. For example the thermal inertia of a room to be heated or cooled cannot be taken into account sufficiently or at all.
U.S. Pat. No. 4,567,557 describes a further developed building automation system referred to as intelligent. This has a centrally organised system with a multiplicity of input side sensors which send their information or control commands to a central processor, and actuators on the output side which receive control commands from the processor. The decisive factor in this system is firstly the centralistic approach, where all information must reach the central processor, and secondly the deterministic approach where all possible cases and combinations are programmed and stored as “behaviour patterns” for subsequent retrieval.
During the following years, systems have been developed and marketed known as “total home systems”. These comprise lighting and object control via the installed power network, which can use the existing infrastructure without significant structural changes. The system consists of a central unit and various receiver units such as switches, dimmers and shutter control. As stated, the existing 230 V network line with sockets is used as the signal line. Thus complex control sequences for different procedural requirements can be stored and repeated within a building.
A deterministic approach is common to all known systems, in which preprogrammed sequences are triggered under time-control, at the request of sensors or by human intervention. Thus these systems, also known as mode programmes, can be used optimally only for specified situations and with time restrictions.
A change in user requirements requires reprogramming of the system, which is beyond the capacity of, or frightens a user, normally a layman. One example here is the change of use of a child's bedroom into a storage room, which in principle creates different conditions. Thus the known systems can only respond with difficulty, or unsatisfactorily, or not at all to spontaneous changes of environment and/or user behaviour. Thus for example a home automation system for households with professional family members is programmed to lower the temperature during the day. If one family member remains at home because of illness, the system responds incorrectly. Manual intervention is required. Resetting to normal mode is then often forgotten.
CH, A 683473 discloses a process for electronically delayed disconnection of the light with a passive infrared sensor as a movement sensor. Thus a specified output value or a stored learned value for time delay can be entered. This value is adapted automatically and continuously to the intensity of movement in the scope of the passive infrared sensor, and on any change of movement intensity a new time delay is continuously set. One specific problem, the optimum delay in disconnection of the lighting, is therefore no longer established exclusively deterministically, an intelligent disconnection delay for the light is matched to the user behaviour.
EP, A 0631219 describes a process for temperature control and adjustment in individual living and working rooms which are used only rarely but with a certain regularity. Constant living habits are taken into account, which should bring optimum comfort with maximum energy saving. A set value is modified to the regularities to be set in the room used as a function of presence times detected by the presence sensor for the following days according to a fuzzy algorithm. The at least partly stochastic behaviour of residents cannot be detected by the process.
The largely similar automatic temperature control and regulation system described in U.S. Pat. No. 5,088,645 is related to individual rooms and has no overall strategy. The algorithms do not contain any separation of deterministic and stochastic behaviour. Disruption factors are integrated by the system.
SUMMARY OF THE INVENTION
The present invention is based on the task of creating a process and a device of the type described initially which reduces to a minimum the process-controlled intelligence, the deterministic components of the home and building automation system, adapts automatically to the at least partly stochastic behaviour of persons in the building and hence allows both energy savings and comfort improvement.
In relation to the process, the task is solved according to the invention in that adaptive self-learning algorithms of the software, controlled by signals from presence and activity monitoring sensors, continuously store the systematic and stochastic behaviour of at least one person in the room concerned and over several rooms, adapt and trigger actuators in conjunction with modifiable deterministic algorithms, where the room-related optimisation algorithms are combined with external parameters into an algorithm to optimise the automation system as a whole and the individual room algorithms are adapted accordingly as feedback. Further and special design forms of the process are the subject of dependent claims.
The presence and activity monitoring with presence and activity-controlled control loops, the neuronal networks with their own computers which detect and evaluate the regular (systematic) and random (stochastic) behaviour, are of greatest importance.
The sensors arranged on the input side of the software, which is usually standard software or software adaptable with specialist knowledge which is stored in a CPU or processor, are for example movement sensors of all types. The most common are passive infrared sensors such as described for example in CH,A 683473 or the company brochure by High Technology Systems AG, CH-8306 Bruttisellen dated Dec. 3, rd 1994 (second issue January 1996). Further passive systems for example detect the noise or pressure waves generated by persons. Movement sensors can also be constructed on active principles, e.g. by emitting an ultrasound or microwave field or by the reception of a field influenced by a moving person. Changes in a static electrical or electromagnetic field can also be detected and the signals passed on for analysis by the software.
External parameters or information sources included in the room-related optimisation algorithms are for example the weather, the external temperature, safety modes or weather forecasts.
Sensors are not however restricted to movement sensors. For example smoke sensors, thermostats, light detectors and other sensors are suitable as input signal generators, to contribute to solution of the task according to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Home and building automation system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Home and building automation system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Home and building automation system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2529314

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.