Hologram incorporating a plane with a projected image

Optical: systems and elements – Holographic system or element – For producing or reconstructing images from multiple holograms

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S001000, C359S032000, C352S086000, C353S010000

Reexamination Certificate

active

06323971

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to the field of holographic displays. More specifically, this invention relates to producing displays that include three dimensional holographic images and two-dimensional static and/or dynamic images.
2. Description of the Related Art
There is interest is holographic three-dimensional displays that include two-dimensional static and/or dynamic imagery for a variety of applications, including advertising, entertainment, and visualization.
A number of static three-dimensional displays are currently capable of being produced that provide limited animation by angularly multiplexing or linking each frame of animation to a specific horizontal or vertical viewing, angle. As the viewer chances viewing angles with respect to the display, the animation is “played,” resulting in perceived motion. These displays, while termed “animated,” cannot be updated in real time, and can only contain a few hundred static frames of animation at any time. Updating, the animation involves the time-consuming and costly process of completely re-recording the component images. Thus, these displays are classified as “static” rather than “active” displays.
Currently, there exist real-time imaging systems that can render and display computer generated holograms at video rates. Examples of such systems include holographic video (e.g., the systems described in U.S. Pat. No. 5,172,251 entitled “Three Dimensional Display System,” naming Stephen A Benton and Joel S. Kollin as inventors) or LCD-lenticular systems. The displays produced by these systems are classified as active displays. The systems are capable of rendering full color images with up to a 36 degree view zone that range in size from 25×25×25 to 150×75×150 millimeters at rates ranging from around 1 to 20 frames per second, depending on the size and view zone of the image. These systems are currently expensive and impractical as they incorporate many complicated moving parts and require extremely high data processing bandwidth to generate and display the images.
Mirrored devices for creating aerial images have been known in the art for many years. Typically, a concave mirror in one form or another is utilized to project an image of an object into space so that to an observer, it appears that a copy of the object is located in a nearby area of space. The copy of the object appears to be levitating in mid-air. While the prior art provides numerous such devices for projecting three-dimensional optical images, the images are in general not “faithful” over a broad range of viewing angles, i.e. not congruent or geometrically similar to the object and must be viewed from a precise angle in order to avoid extreme distortion. Additionally, the prior art devices are not capable of producing images which appear to be located in an area of space far from the mirrored device.
U.S. Pat. No. 5,311,357 discloses a device which positions concave mirrors in a unique arrangement with respect to one another so to produce an image with greater clarity. Additionally, a videotape option allows a whole image to be broadcast and real objects merged with the broadcast image so that the entire combined image appears three-dimensional to a properly located observer. These displays can be classified as combination “active/static” because they incorporate a non-updateable three dimensional subject with a dynamic two dimensional screen display of standard video or film strip imagery.
These mirrored display devices tend to be expensive since there is a direct relationship between the object size and the optical components are that are required to produce the image of the object. Another concern arises in situations where a customer must pay for floor space. Additionally, these displays are not practically scalable, since some of the optics involved must be on the order of twice the size of the images. For example, image sizes over one cubic foot are not practical because they require display systems that are impractically large and cumbersome.
Therefore, with the limited systems of the prior art, projected images are not readily scalable. There exists a need for an improved image projecting device which will provide a large, scalable, faithful three-dimensional image which can be used in numerous applications such as advertising, entertainment, and visualization. It is also important for the improved image projecting device to maintain an occlusion depth cue when the three dimensional image is viewed from various perspectives.
SUMMARY OF THE INVENTION
The present invention provides a system and method for generating a composite display that includes at least one static three dimensional holographic image, and dynamic and/or static two dimensional images. In one embodiment, the static hologram of an object image is included on a transparent substrate, forming an object hologram. A silhouette hologram includes a three-dimensional silhouette image of the object image. The silhouette hologram can also include a holographic diffusion screen in the area surrounding the silhouette image. The object hologram overlays the silhouette hologram with the object image substantially aligned with the silhouette image. A first light source illuminates the object hologram, and a second light source illuminates the silhouette hologram. The silhouette image provides a background for viewing the object image. Static and/or dynamic images can be projected on the diffusion screen when it is included in the silhouette hologram, so that the composite image includes static and/or dynamic two-dimensional imagery combined with the static object image. With this assembly, the three-dimensional silhouette hologram maintains an occlusion depth cue for the object hologram even when it is viewed from various perspectives.
In another embodiment of the present invention, a method for generating a composite image that includes a three-dimensional holographic image is provided that includes:
generating a three dimensional object hologram on a transparent substrate;
generating a silhouette hologram having a three-dimensional silhouette image of the object hologram; and
overlaying the silhouette hologram and the object hologram such that the silhouette image and the object image are substantially aligned.
One feature of the present invention includes a black, three-dimensional silhouette hologram that absorbs the light from the second light source and provides a background for the object hologram that is illuminated by the first light source.
Another feature of the present invention is a diffusion screen that reflects the light from the second light source and provides a screen for displaying the projected image. The projected image appears to the viewer as being behind the object image of the composite display.
With the present invention, various types of static and/or dynamic projected images can be combined with any number of object and silhouette holograms. The object holograms can be included on one or more transparent substrates and overlay the silhouette hologram. Different light sources at different angles can be used to illuminate the object hologram and the silhouette hologram so that they appear only when illuminated by the corresponding light source.
The present invention has several advantages over alternative technologies. First, it provides the occlusion depth cue that alternative aerial image displays cannot provide without having the physical object and video screen resident within the optical train. Second, images generated with the present invention are highly scaleable due to a tiling technique adapted to this type of hologram. This makes it possible to generate images of various sizes, and to package and display the images simply and compactly. Third, an image can be reconstructed with little or no distortion over a very wide viewing angle, such as 110 degrees horizontally by 90 degrees vertically, which contrasts greatly with other systems known in the prior art. Additionally, multiple dyn

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hologram incorporating a plane with a projected image does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hologram incorporating a plane with a projected image, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hologram incorporating a plane with a projected image will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2586757

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.