Hollow fiber membrane contactor

Gas separation: processes – Selective diffusion of gases – Selective diffusion of gases through substantially solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C095S045000, C096S006000, C096S008000, C096S014000

Reexamination Certificate

active

06582496

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a hollow fiber membrane contactor for phase separations and other phase contact applications. The contactor is made from perfluorinated thermoplastic polymeric materials, has a high packing density providing high useful contacting area, and the ability to operate with liquids of low surface tension.
BACKGROUND OF THE INVENTION
Liquid-gas contactors are used to transfer one or more-soluble substances from one phase to another. Examples of conventional contactors are packed towers, plate columns and wetted wall columns. In these systems, gas absorption of one or more components from the gas stream is accomplished by dispersing the gas as bubbles in packed towers and plate columns in a countercurrent flow to the liquid stream. Absorption efficiency is controlled apart from solubility considerations by the relative rate of the flows and the effective surface area of the gas flow bubbles. In wetted wall contactors the gas stream flows past a downward flow of liquid on the inside wall of a vertical tube. Gas stripping is used to transfer a gas dissolved in liquid into a gas stream. Similar contactors are used for gas stripping.
Conventional contactors have several deficiencies. Primary among these is the fact that the individual gas and liquid flows cannot be varied independently over wide ranges. Tray columns are prone to such problems as weeping at low gas flows and flooding at high liquid flows. Packed towers can flood at high flow rates. The use of low liquid flow rates In a packed tower would lead to channeling and reduced effective surface area. Excessive frothing or foam formation can lead to process inefficiency. Wetted wall contactors have inherently low mass transfer coefficients, and can flood at high gas flow rates. The development of membrane contactors has overcome these deficiencies.
Membrane contactors are devices through which two fluid phases flow separated by a membrane permeable to the gas being transferred. If a microporous membrane is being used, the preferred method relies on the non-wetting characteristic of the membrane material and the pore size to prevent liquid from intruding into the pores and filling them. Gas transfer then occurs through the gas filled pores to or from the liquid, depending on whether the process is absorption or stripping. If a non-porous membrane is used, gas transfer is controlled by the diffusion rate in the non-porous layer of the membrane. In some cases, such as oxygen removal from ultrapure water, gas stripping is done with a vacuum instead of a stripping gas flow. While other membrane geometries are available for this use, hollow fiber membranes are suited as contactors.
A hollow fiber porous membrane is a tubular filament comprising an outer diameter, an inner diameter, with a porous wall thickness between them. The inner diameter defines the hollow portion of the fiber and is used to carry one of the fluids. For what is termed tube side contacting, the liquid phase flows through the hollow portion, sometimes called the lumen, and is maintained separate from the gas phase, which surrounds the fiber. In shell side contacting, the liquid phase surrounds the outer diameter and surface of the fibers and the gas phase flows through the lumen.
The outer or inner surface of a hollow fiber membrane can be skinned or unskinned. A skin is a thin dense surface layer integral with the substructure of the membrane. In skinned membranes, the major portion of resistance to flow through the membrane resides in the thin skin. The surface skin may contain pores leading to the continuous porous structure of the substructure, or may be a non-porous integral film-like surface. In porous skinned membranes, permeation occurs primarily by connective flow through the pores. Asymmetric refers to the uniformity of the pore size across the thickness of the membrane; for hollow fibers, this is the porous wall of the fiber. Asymmetric membranes have a structure in which the pore size is a function of location through the cross-section, typically, gradually increasing in size in traversing from one surface to the opposing surface. Another manner of defining asymmetry is the ratio of pore sizes on one surface to those on the opposite surface.
Manufacturers produce membranes from a variety of materials, the most general class being synthetic polymers. An important class of synthetic polymers are thermoplastic polymers, which can be flowed and molded when heated and recover their original solid properties when cooled. As the conditions of the application to which the membrane is being used become more severe, the materials that can be used become limited. For example, the organic solvent-based solutions used for wafer coating in the microelectronics industry will dissolve or swell and weaken most common polymeric membranes. The high temperature stripping baths in the same industry consist of highly acid and oxidative compounds, which will destroy membranes made of common polymers. Perfluorinated thermoplastic polymers such as poly(tetrafluoroethylene-co-perfluoro(alkylvinylether)) (poly(PTFE-CO-PFVAE)) or poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) are not adversely affected by severe conditions of use, so that membranes made from these polymers would have a decided advantage over ultrafiltration membranes made from less chemically and thermally stable polymers. These thermoplastic polymers have advantages over (poly(tetrafluoroethylene) (PTFE), which is not a thermoplastic, in that they can be molded or shaped in standard type processes, such as extrusion. Perfluorinated thermoplastic hollow fiber membranes can be produced at smaller diameters than possible with PTFE. Fibers with smaller diameters, for example, in the range of about 350 micron outer diameter to about 1450 micron outer diameter, can be fabricated into contactors having high membrane surface area to contactor volume ratios. This attribute is useful for producing compact equipment, which are useful in applications where space is at a premium, such as in semiconductor manufacturing plants.
Being chemically inert, the Poly (PTFE-CO-PFVAE) and FEP polymers are difficult to form into membranes using typical solution casting methods as they are difficult to dissolve in the normal solvents. They can be made into membranes using the Thermally Induced Phase Separation (TIPS) process. In one example of the TIPS process a polymer and organic liquid are mixed and heated in an extruder to a temperature at which the polymer dissolves. A membrane is shaped by extrusion through an extrusion die, and the extruded membrane is cooled to form a gel. During cooling the polymer solution temperature is reduced to below the upper critical solution temperature. This is the temperature at or below which two phases form from the homogeneous heated solution, one phase primarily polymer, the other primarily solvent. If done properly, the solvent rich phase forms a continuous interconnecting porosity. The solvent rich phase is then extracted and the membrane dried.
Hydrophobic microporous membranes are commonly used for contactor applications with an aqueous solution that does not wet the membrane. The solution flows on one side of the membrane and a gas mixture preferably at a lower pressure than the solution flows on the other. Pressures on each side of the membrane are maintained so that the liquid pressure does not overcome the critical pressure of the membrane, and so that the gas does not bubble into the liquid. Critical pressure, the pressure at which the solution will intrude into the pores, depends directly on the material used to make the membrane, inversely on the pore size of the membrane, and directly on the surface tension of the liquid in contact with the gas phase. Hollow fiber membranes are primarily used because of the ability to obtain a very high packing density with such devices. Packing density relates to the amount of useful membrane surface per volume of the device. It is related to the number of fibers that can be potted in a finished cont

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hollow fiber membrane contactor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hollow fiber membrane contactor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hollow fiber membrane contactor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3094080

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.