Hockey stick shaft and method of making the same

Games using tangible projectile – Player held and powered – nonmechanical projector – per se,... – Club

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06241633

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of hockey sticks and the like and more particularly, to a fiber reinforced composite hockey stick shaft adapted for receiving a replacement blade at one end. The invention also relates to an improved cross-sectional configuration for a fiber reinforced composite hockey stick shaft and a process for making such a shaft.
2. Description of the Prior Art
Hockey sticks in general, and ice hockey sticks in particular, have experienced dramatic changes throughout the years. As a result, ice hockey sticks have changed from plain wooden sticks having straight blades and handles to significantly improved sticks having curved blades and being reinforced with fiber-glass or the like. However, regardless of the particular stick construction and reinforcement, the great majority of sticks continue to have a generally rectangular cross-sectional configuration. Although stick configurations other than rectangular, such as oval or rectangular with rounder corners have been tried, these other configurations have not proven to be particularly popular with hockey players.
Significant evolution has also occurred in the construction of the stick itself. Initially both the handle and blade portions were constructed of wood and were joined with one another through various processes to form a single, integral stick. As technology developed, metal hockey stick shafts, particularly aluminum shafts, have been introduced. Such shafts included an elongated handle portion constructed of a tubular section of aluminum or other lightweight metal and are adapted for connection with a replacement blade. The replacement blades are usually purchased separately from the handle or shaft and include a blade portion and a shaft connecting end designed for connection through various adhesive means or the like to the aluminum handle. When a blade breaks or wears out, the blade is replaced with a new one.
More recent developments relating to ice hockey sticks have included the introduction of plastic or composite shafts. Plastic or composite shafts, like aluminum shafts, are elongated, generally hollow, and are designed for connection with a replacement blade. A variety of methods have been utilized in the construction of such shafts including, among others, pultrusion processes as exemplified by U.S. Pat. No. 4,086,115 issued to Sweet et al. and wrapping processes as exemplified by U.S. Pat. No. 4,591,155 issued to Adachi. Although a relatively large number of plastic or composite shafts are currently available, they have not been widely accepted as a replacement for aluminum shafts or for the traditional wooden hockey stick. The reasons are believed to be related to the relatively strict functional requirements of such a shaft as well as the cost.
First, the shaft must be relatively lightweight to simulate a traditional wooden stick, yet exhibit sufficient strength to withstand the stresses placed on the shaft by the hockey player. Such stresses occur throughout the entire length of the shaft, but particularly at or near the point at which the blade is secured to the lower end of the shaft. Such stresses are increased and the problems compounded as a result of the continuing popularity of the slap shot and the presence of bigger and stronger players.
Second, a shaft must reasonably simulate the flexural characteristics of a wooden stick or be capable of exhibiting the flexural characteristics desired by particular players.
Third, the shaft must meet established safety standards. This generally means that the shaft must be capable of breaking under certain loads and must break in a manner which is no more dangerous to the user or other players than a traditional wooden stick.
Fourth, the shaft must be cost effective so that it can compete favorably with the traditional wooden sticks and with aluminum shafts and replacement blades.
Although various efforts have been made, and continue to be made, to design a composite hockey stick shaft to meet the above objectives, few, if any, have been totally successful. Accordingly, there is a continuing need in the art for a composite hockey stick shaft which provides the desired flexural and other characteristics for stick performance, which meets acceptable safety standards and which is cost effective.
SUMMARY OF THE INVENTION
One aspect of the present invention relates to a composite hockey stick shaft with a novel construction which is adapted for receiving a replacement blade at one end. A second aspect of the present invention relates to a composite hockey stick shaft with a unique cross-sectional configuration. A third aspect of the present invention is to provide a process for making such a shaft. In the preferred structure, the shaft of the present invention is an elongated, hollow shaft in which the major portion of the length has a unique cross-sectional configuration. This configuration includes generally flat sides and curved top and bottom edges which are distinguished from conventional shafts with generally rectangular cross-sectional configurations.
Traditional hockey sticks have generally rectangular cross-sectional configurations with a relatively small radius at each corner. Throughout the years, others have experimented with the cross-sectional configuration by providing hockey sticks with oval or modified rectangular configurations or the like. Recently, others have provided sticks with increased radii at each corner of the stick. However, these radii are not sufficiently large to eliminate any of the flat areas on the stick. Further, the circumference of such modified configuration is less than that of a traditional stick. Accordingly, the present invention provides a handle with a unique cross-sectional configuration which eliminates the flat areas on the top and bottom edges of the stick and which more closely fits the curve of the player's hand.
In general, the process of making the shaft in accordance with the present invention includes first laying up various fiber reinforced layers or plies in a resin matrix. Each of the plies is preferably pre-cut so that the plies can be laid, one on top of the other, on a lay-up table or other substrate. Preferably, the fibers of the various plies are oriented at +45°, −45°, and 0°, with an outer woven ply having fibers oriented at 0 and 90°.
The laid up matrix is wound onto a mandrel supported bladder for one revolution and is then cut longitudinally so that the longitudinal ends of the matrix butt against one another. Next, the mandrel with the supported bladder and matrix wound thereon is positioned in a two part pre-mold structure corresponding to the desired exterior surface configuration of the shaft. In the preferred embodiment, this configuration has a pair of sides and top and bottom edges in which each of the sides include a flat portion and the top and bottom edges include only a curved or radius portion. Further, the circumference of the shaft configuration is such that it is equal to or greater than the circumference of a conventional rectangular hockey stick shaft. In other words, the circumference of the shaft in accordance with the present invention is at least as great as the circumference of a conventional rectangular shaft.
After positioning the bladder in the pre-mold, the mold is heated and the bladder is inflated. This inflation squeezes the resin impregnated fiber plies outwardly against the inner walls of the mold cavity. This inflation is performed under a specified level of heat to at least partially cure the resin to provide a preformed shaft. After a pre-determined period of time, the preformed shafts are removed from the first molds and placed into a second, master mold, having exact external dimensions of the desired final product. The bladder is again inflated under significantly higher pressures and higher curing temperatures to finally squeeze out the remaining excess resin and cure the remaining resin. When the curing process is complete, the shaft is removed fro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hockey stick shaft and method of making the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hockey stick shaft and method of making the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hockey stick shaft and method of making the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2447765

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.