HIV-2 peptides

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S344000, C530S826000, C435S005000, C435S235100, C435S974000

Reexamination Certificate

active

06541609

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to primate T-lymphotrophic viruses, as well as assays for such viruses and substances used in those assays.
A group of closely related human retroviruses that preferentially infect helper T-lymphocytes have been designated human T-lymphotrophic viruses (HTLV). One type of HTLV, designated HTLV-I, has been linked with the development of adult T-cell leukemia/lymphoma (Poiesz et al. (1980) Proc. Nat'l. Acad. Sci. USA 77:7415). A virus related to HTLV-I has been reported in non-human primates, specifically Asian and African Old World primate species, but not New World primates and prosimians. The primate viruses from baboons, African green monkeys, and
Macaca
species are related to, yet distinct from, HTLV-I. Guo et al. (1984) Science 223:1195; Tsujimoto et al. (1985) Virology 144:59.
Another type of HTLV, designated variously as HTLV-III, or Lymphadenopathy Associated Virus (“LAV” or “ARV”) is the prototype virus from patients with acquired immune deficiency syndrome (AIDS) (Popovic et al. (1984) Science 224:497; Salahuddin et al. (1984) Science 224:500; Schupbach et al. (1984) Science 224:503; Sarngadharn et al. (1984) Science 224:506). Various antigenic proteins from HTLV-III infected cells have been repported, including:
1) a 55 kd gag polyprotein (p55) which yields a 24 kd protein (p24) as the major virus core protein, and a 17 kd phosphoprotein (pp17) (Schupbach et al. (1984) Science 224:503-505); and
2) an envelope glycoprotein (gp160) which gives rise to a 120 kd glycoprotein (gp120) at its amino terminus (Essex and Lee, U.S. Ser. No. 670,361, filed Nov. 9, 1984, and a continuation-in-part thereof filed Nov. 7, 1985, both of which are hereby incorporated by reference).
SUMMARY OF THE INVENTION
We have discovered an exogenous type C retrovirus that infects simian species and is closely related to HTLV-III. Specifically, cells infected woth simian T-lymphotrophic virus-III (STLV-III) produce proteins that are generally immunologically cross-reactive with the respective major proteins produced by HTLV-III infected cells. STLV-III infects African green monkeys (AGM), and
Macaca
species, and may infect other primate species. As used in this application, the term African green monkeys include all animals classified as members of genus
Cercopithecus
and particularly the species
C. aethiops
. Growth characteristics, T-4 tropism, and ultrastructural morphology of STLV-III are similar to that of HTLV-III. The STLV-III that infects
Macaca
species (STLV-III
MAC
) induces biological effects similar to those that HTLV-III induces in humans, including immunodeficiency or immunosuppressive disease. The STLV-III that infects African green monkeys (STLV-III
AGM
) does not appear to produce disease. The term STLV-III is used in this application to include STLV-III
AGM
and any all forms, subtypes and variations of those and other HTLV-III-like retroviruses that infect simians.
We have also discovered a human virus, HTLV-IV, that is virtually indistinguishable from STLV-III
AGM
by immunological techniques, and, like STLV
AGM
, does not appear to cause AIDS or ARC-like symptoms in infected humans. The term HTLV-IV is used to designate viruses that immunologically are more closely related to STLV-III than to HTLV-III as indicated by the strength and breadth (number of determinants recognized) of immunological cross reactivity. The term HTLV-IV is used for convenience to refer to human viruses, without necessarily implying any distinction between STLV-III and HTLV-IV.
The discovery and characterization of STLV-III and HTLV-IV is important in several respects. First, STLV-III- and HTLV-IV-infected cells provide a source of antigenic determinants that are generally useful in assays of simian or human specimens, as described below. Second, the animal species particularly at risk for STLV-III infection, the African green monkeys, is used for research and development of a variety of biological reagents; for example African green monkey tissue is used in the production of oral polio vaccine. It is desirable to reduce the chance (however unlikely) that an AIDS-like disease could be transmitted inadvertantly in polio vaccine or other products produced from STLV-III-infected animal tissue. Third, since STLV-III
AGM
and HTLV-IV do not appear to cause disease in infected monkeys or humans, yet are immunologically cross-reactive with disease-causing HTLV-III, a vaccine based on STLV-III or HTLV-IV could protect against AIDS.
Peptides having STLV-III or HTLV-IV antigenic determinants and assays using them
Accordingly, a first aspect of the invention generally features a substantially pure polypeptide having at least one antigenic determinant that is substantially identical to an antigenic determinant of a protein from a cell line infected with STLV-III or HTLV-IV, the protein being selected from: a) a glycoprotein having a molecular weight (m.w.) of about 160,000 daltons; a glycoprotein having a m.w. of about 120,000 daltons; a gag protein having a m.w. of about 55,000 daltons; a gag protein having a m.w. of about 24,000 daltons; and a glycoprotein having a m.w. of about 32,000. By “a polypeptide having an antigenic determinant that is substantially identical to a protein antigenic determinant” is meant a polypeptide comprising an antigenic determinant which: a) in common with the protein antigenic determinant, will react with a given antibody; and b) is derived either by i) isolating the naturally produced protein or a fragment of it; or ii) synthesizing (e.g. by expression of DNA such as by the general method of Chang et al. (1985) Nature 315:151, or chemical synthesis) an amino acid sequence identical to the protein antigenic determinant. As demonstrated below, the STLV-III and HTLV-IV cell proteins are immunologically cross-reactive with HTLV-III cell proteins, but the reaction of an STLV-III or HTLV-IV protein with a given antibody may vary in comparison to the reaction of the corresponding HTLV-III protein with the same antibody. Therefore, while the STLV-III and HTLV-IV antigenic determinants may be substantially identical for purposes of this application, neither STLV-III nor HTLV-IV determinants are substantially identical to HTLV-III determinants.
Preferably, the polypeptide antigenic determinant is substantially identical to an antigenic determinant of a protein expressed in a cell line infected with STLV-III
AGM
or HTLV-IV. Also preferably, the polypeptide is one of the proteins listed above, or a fragment thereof; most preferably, the polypeptide is a gp32 or a gp160 or gp120 glycoprotein in the glycosylated or unglycosylated form. Also preferably, the polypeptide is not substantially cross-reactive with the HTLV-III/LAV glycoprotein p41; and the polypeptide antigenic determinant is more strongly reactive with a determinant of an STLV-III or HTLV-IV glycoprotein than with an HTLV-III glyprotein determinant. Other useful polypeptides which have the necessary immunogenic determinants include synthetic polypeptides.
The above described polypeptides of the first aspect of the invention are useful, among other things, for assaying for the pressure of antibodies to T-lymphotrophic viral antigens, by incubating a specimen with the polypeptide and determining whether or not an immunocomplex is formed. Also, the above-described polypeptides can be used to raise an antibody that is useful for assaying a biological specimen (e.g., human or simian) for the presence of an antigenic determinant that is immunologically cross-reactive with a determinant of one of the four proteins listed above. The assay is performed by incubating the specimen with the antibody thus raised and determining whether an immunocomplex is formed. The determinants to be assayed may occur on the stated proteins themselves or on other polypeptides. They may be in free circulation in the body fluids or in lymphocytes. The assay can be carried out by known immunoassay methods, using antibodies, monoclonal or polyvalent, having immune reactivity with the antigenic determ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

HIV-2 peptides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with HIV-2 peptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and HIV-2 peptides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3062371

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.