Hinged thermoplastic structural piece containing injection...

Static structures (e.g. – buildings) – With synthetic resinous component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S290000, C052S716800, C428S195100

Reexamination Certificate

active

06345479

ABSTRACT:

BACKGROUND OF THE INVENTION
TECHNICAL FIELD OF THE INVENTION
The present invention incorporates synthetic resin thermoplastic panels or pieces, such as baseboard-type panels, that are joined by an integral hinge and that include resilient injection molded portions. The hinged panel or piece of the present invention may be used in a variety of applications such as to provide sealing ends on or between hinged thermoplastic panels or to create resiliently closeable passages in or between hinged thermoplastic panels through which wires and other objects may be passed while maintaining an even surface appearance of the baseboard panel.
BACKGROUND
The present invention pertains generally to the field of thermoplastic constructions such as those in office furnishings and equipment, hospital and clinic furnishings, cafeteria furnishings, office partitions, etc.
Office furnishings and equipment, and the like, are often put into service in environments where there is exposure to impact and abrasion, such as through heavy foot traffic, hand contact, or exposure to things in motion, such as office equipment, dollies, carts, tables, chairs, wheelchairs, and hospital beds.
Office furnishings and equipment, and the like, are typically provided with baseboards, railings, and other pieces to resist or absorb impacts and scuffing, as well as to present and maintain an even and neat appearance in the presence of such wear and tear.
It is also often the case that such furnishings incorporate trim pieces, and the like, to provide a continuous covering or finish. However, such pieces must be produced so as to be securely incorporated into the balance of the furnishing piece, such as along the top or bottom of office partitions. Accordingly, it is desirable to be able to produce a thermoplastic piece or panel capable of secure incorporation into a top or bottom raceway or conduit of a furnishing piece such as a wall-type divider or partition panel.
It is also preferred in many applications for plastic or synthetic resin articles to have inherent flexibility in certain localized areas, without introducing irreversible distortion or fracture of the plastic during flexing. More specifically, many applications require portions of the synthetic resin article to be substantially rigid to provide structural integrity during its intended use. However, for ease of installation certain portions of the article should be relatively flexible, but not so soft as to affect the overall utility of the article for its intended use. Thus, the need arises for synthetic resin articles having a relatively flexible semi-rigid area connecting substantially more rigid areas, approximately analogous to a hinge. Such hinges in synthetic resin articles are used in numerous applications. A few illustrative examples are explicated to clarify, in a practical sense, the utility of such synthetic resin thermoplastic hinges.
Folding doors are often constructed of numerous rigid plastic panels joined by relatively flexible plastic hinges. The plastic joining material must be sufficiently flexible to permit the individual door panels to fold or collapse to nearly a face-to-face parallel geometry when the folding door is fully open (contracted). Yet the same flexible plastic joining material must be sufficiently durable to withstand many flexing operations, and to form an integral part of the door itself when the door is fully closed (extended). Thus, the plastic joining material must have a correct balance of flexibility, without being too soft, to function as an integral part of the closed door.
A major use for semi-rigid synthetic resin thermoplastics is for office construction and furnishing applications. For example, in office furnishing systems, a semi-rigid plastic is a very convenient way to join space separation panels at a variety of angles for a variety of office configurations, without incurring unacceptable expense in assembly and disassembly.
A further application to such office furnishings involves hinged access panels, such as baseboard-type panels, to enable easy access to office equipment, electrical cabinets, etc. Flexibility is clearly required for a hinge on a multi-sectioned access panel, but certain rigidity and structural integrity is also desirable.
As a final illustrative example, for raceway covers and baseboard panels as used in office furnishing systems it is desirable to have hinge-type flexibility while retaining rigidity and durability properties of sections of the hinged thermoplastic synthetic resin panels. Rigidity is required of the panels or pieces to maintain a structurally sound covering, while some flexibility at the hinges is needed for rapid installation in a variety of geometries of home, office, and industrial furnishing panels, dividers, and/or partitions.
These examples illustrate a few of the cases in which hinge areas in thermoplastic panels or pieces are desirable. One common method for constructing such hinges is to coextrude the rigid plastic material to have an integral score line extruded into the panel or piece that forms a hinge line in the direction of extrusion, along the line about which the final product is required to flex.
The hinged thermoplastic panel or piece of the present invention also preferably incorporates a resilient plastic portion that is configured to form sealing ends on or between a plurality of hinged thermoplastic panels or to create resiliently closeable passages in or between the hinged thermoplastic panels through which wires and other objects may be passed while maintaining an even surface appearance of the baseboard panel.
To achieve this end, it is often desirable to be able to take advantage of two or more plastic materials having different flexion and appearance qualities by incorporating them into a single part. This is complicated by the fact that attempts to incorporate different materials require a secondary adhesion operation. This secondary operation often involves specialized adhesives or the injection molding of different polymers under adverse conditions. Such adverse conditions: (1) may not allow the two materials to sufficiently adhere, or (2) may mar the surface or other aesthetic qualities of the part, or both (such as through the application of heat or pressure, or both). To address these and other problems, the present invention provides a method of integrating dissimilar synthetic resin polymers to one another.
It is also often desirable to be able to produce plastic composites capable of being used as sight and/or light barriers, as well as to produce products that present and maintain desirable aesthetic qualities such as those needed on office furnishings like room divider or partition panel raceway covers.
Also, in many instances, these pieces must be made to allow the passage of various electrical and signal transmission wires, fiber optic cables, and the like, which are often necessary to operate office equipment such as, for example, telephones, computers, copiers, printers, projectors, networks, lights, and electrical outlets.
To this end, office furnishing divider or partition panels normally have been provided with holes or gaps along a top, middle, or bottom portion to allow wires and cables to be passed through regions therein commonly referred to as raceways. However, the various potential applications of thermoplastic hinged baseboard panels, their arrangement, and their working environments make it difficult to predict where wire/cable access will be needed, and the size and number of wires or cables to be passed through at a given location.
One of the ways of constructing a thermoplastic baseboard hinge panel to have gaps therein or panels that form gaps between one or more of such panels, is to extrude a relatively rigid panel of material such as a rigid PVC. These panels are then cut to a desired length and a relatively flexible polymeric material, such as a flexible PVC material, is then adhered to the relatively rigid material through use of an adhesive, such as a cyanoacrylate adhesive, in a secondary hand operati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hinged thermoplastic structural piece containing injection... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hinged thermoplastic structural piece containing injection..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hinged thermoplastic structural piece containing injection... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2954268

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.