Hinge for pivoting a flap and a method of using and making same

Miscellaneous hardware (e.g. – bushing – carpet fastener – caster – Checks and closers – Hinge

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C016S354000, C016S085000

Reexamination Certificate

active

06725502

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
This application claims the priority of foreign application number 100 27 570.2, filed in Germany on Jun. 2, 2000, the disclosure of which is expressly incorporated by reference herein.
The invention relates to a hinge for pivoting a flap, and, in particular to a hinge for pivoting a flap on a motor vehicle having two linkages or legs which are rotatably connected with one another about at least one axis of rotation.
Within the scope of the present invention, the term “flap” includes all types of flaps, doors, lids or other covers which are conventionally connected with the body of a motor vehicle by way of an articulated joint.
According to the prior art, conventional flaps must be set in motion such that during a closing movement they fall into a lock at a minimum speed. The kinetic energy connected with this minimum speed must be sufficiently high in order to press together in a large-surface manner, for example, the sealing of a vehicle body opening to be covered, so that the lock is reliably caused to engage. Only then will the flap close off the vehicle body opening in a secure and sufficiently tight manner.
Additional energy is required for overcoming the friction in the system which must be applied manually by the user. If the flap is closed by way of a handle situated on an interior side, this handle has to be released at a relatively early point in time in order to prevent a pinching of the hand. Since the angle of the flap opening is still relatively large, the flap must already be set into a relatively high-speed motion at this point in time, for example, 1.5 m/s at a rear edge of the flap, in the case of a rear flap. This is often relatively difficult and always carries the risk of contusions.
It is therefore an object of the present invention to provide a hinge of the above-mentioned type having a new mechanical design which aids the closing of a flap. In addition, it should be possible to upgrade known hinges in a simple manner by means of the arrangement according to the invention.
According to the invention, this object is achieved by providing a hinge having a transmission arranged for transmitting a torque occurring during a closing movement of the hinge to a flywheel mass for an intermediate accumulation and subsequent aiding and continuation of the closing movement.
The closing of a flap in a hinge according to the invention is aided by an accumulation of energy during the initial closing movement and a subsequent delivery of this energy after the flap has been let go. Accordingly, a hinge according to the invention comprises, in addition to the actual hinged joint, a transmission which is mechanically coupled with the hinge and includes a flywheel mass. During the movement of the flap at the start of the closing movement, the flywheel mass is caused to carry out a rotary motion. After the flap is released, the energy accumulated in the flywheel mass causes a complete closing at a speed which, in comparison to arrangements according to the prior art, is clearly lower. The resistance of the above-mentioned energy-absorbing structural elements, such as the seal, the air resistance, the bearing friction and the balance of weight, is overcome by the available energy which is intermediately stored in the rotary motion of the flywheel mass.
In principle, a unit comprising a flywheel mass and a transmission, in the following is also called a flywheel transmission and is constructed such that it can also be used on a hinge as a separate and subsequently mounted structural element. Thus, a hinge can be retrofitted to form a flywheel transmission according to the invention. However, a hinge is preferably equipped directly with a flywheel transmission and, in the following, is therefore called a hinge according to the invention.
The transmission with a flywheel mass is situated in an area which is in each case suitable for introducing a torque. Advantageously, according to the available space in an embodiment with very limited space, the flywheel transmission and the hinge are coupled with one another by way of a cardan shaft. However, a compact construction is preferable, in which the flywheel transmission is arranged directly in or on the hinge with a direct mechanical coupling, preferably in the area of an axis of rotation of the hinge.
Also in the case of a small mass or flywheel mass, sufficient energy can be stored in the form of a rotary movement because of a corresponding rotational speed, in order to change the hinge also against the above-described resistances into its closed position or closing position. As a result, an additional mass is added to the weight of the rear flap which does not weigh much itself. For this purpose, the transmission is constructed as a step-up gearing.
The hinge of the flap or door may be a single-joint hinge, a four-joint hinge, a multiple-joint hinge or a gearwheel-type hinge. However, any other joint concept or hinge concept can be used in which rotary motions occur internally which are suitable for controlling a flywheel transmission according to the invention.
In an embodiment of a hinge according to the invention, the flywheel transmission is mounted on the flap side. Thus, for example, when arranged on a trunk lid, it does not present an obstacle during the installation as well as during the loading of a trunk equipped in this manner. In this case, the flywheel transmission introduces its torque into the vehicle-body-fixed part of the hinge or into an element of a multiple-joint hinge or directly by way of a force transmission into the vehicle body.
However, advantageously, the flywheel transmission can also be mounted on the vehicle body or the vehicle-body-fixed part of the hinge so that the pivoted flap is relieved by the additional component. The construction must then be aimed at the fact that a torque or a force must be introduced or transmitted from the site of the flywheel transmission on the vehicle body by way of a lever into the flap or an element of the hinge or of a multiple-joint hinge.
In another embodiment, the flywheel transmission is fastened on an element of a multiple-joint hinge or other hinge. In this case, the flywheel transmission introduces its torque directly or introduces a force by way of a lever into another element of the hinge. A direct introduction of force from the flywheel transmission into the vehicle body or into the flap is also conceivable, a distance from the point of the introduction of force to the pivot serving as the lever arm.
According to a preferred embodiment, when the flap is operated in an unusual to unauthorized manner, an excessive force can act upon the flywheel transmission. This may result in damage or require an unnecessarily solid construction. The danger of excessive pinching forces when closing the flap can also have a negative effect. In a further preferred embodiment, the driving torque is therefore limited by the interposition of an overload clutch if torques occur which are unnecessarily high for the normal operation. As a result, while using simple mechanical elements, a force limitation is implemented in the smallest additional space. Simultaneously, as a result of this measure for combating danger, the entire construction can have a weaker dimensioning.
For improving the comfort during the opening, a counterweight is provided on the flap in the case of known flaps. This counterweight aids the movement of the flap at least during the start of the movement so that not the entire force must be applied manually. As a device for balancing the weight, a spring element in the form of a pneumatic spring may, for example, be provided. However, during the closing, the pneumatic spring simultaneously has to be prestressed for the closing movement. For this purpose, additional energy must therefore be applied during the closing movement. By means of a conventional mechanical design, the target conflict resulting from the above-mentioned requirements between a good closing comfort and simultaneously a good opening comfort can be so

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hinge for pivoting a flap and a method of using and making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hinge for pivoting a flap and a method of using and making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hinge for pivoting a flap and a method of using and making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3214576

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.