Highly versatile thermoplastic nucleators

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06559211

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to types of bicyclic nucleator compounds that provide highly versatile nucleation benefits for different thermoplastics. Such nucleator compounds provide very high peak crystallization temperatures and short crystallization cycle time for certain thermoplastic formulations with or without the presence of other calcium stearate and/or peroxide components within the same type of formulation. Furthermore, such inventive nucleator compounds exhibit very little, if any, fugitivity from such thermoplastic formulations thereby providing excellent processing characteristics as well as excellent nucleation capabilities for a variety of different thermoplastic resins, independent of the presence of different, potentially necessary, additives (such as calcium stearate). Thermoplastic compositions as well as thermoplastic additive packages comprising such inventive nucleator compounds are also contemplated within this invention.
BACKGROUND OF THE PRIOR ART
All U.S. patents cited below are herein entirely incorporated by reference.
As used herein, the term “thermoplastic” is intended to mean a polymeric material that will melt upon exposure to sufficient heat but will retain its solidified state, but not prior shape without use of a mold or like article, upon sufficient cooling. Specifically, as well, such a term is intended solely to encompass polymers meeting such a broad definition that also exhibit either crystalline or semi-crystalline morphology upon cooling after melt-formation. Particular types of polymers contemplated within such a definition include, without limitation, polyolefins (such as polyethylene, polypropylene, polybutylene, and any combination thereof), polyamides (such as nylon), polyurethanes, polyesters (such as polyethylene terephthalate), and the like (as well as any combinations thereof).
Thermoplastics have been utilized in a variety of end-use applications, including storage containers, medical devices, food packages, plastic tubes and pipes, shelving units, and the like. Such base compositions, however, must exhibit certain physical characteristics in order to permit widespread use. Specifically within polyolefins, for example, uniformity in arrangement of crystals upon crystallization is a necessity to provide an effective, durable, and versatile polyolefin article. In order to achieve such desirable physical properties, it has been known that certain compounds and compositions provide nucleation sites for polyolefin crystal growth during molding or fabrication. Generally, compositions containing such nucleating compounds crystallize at a much faster rate than unnucleated polyolefin. Such crystallization at higher temperatures results in reduced fabrication cycle times and a variety of improvements in physical properties, such as, as one example, stiffness.
Such compounds and compositions that provide faster and or higher polymer crystallization temperatures are thus popularly known as nucleators. Such compounds are, as their name suggests, utilized to provide nucleation sites for crystal growth during cooling of a thermoplastic molten formulation. Generally, the presence of such nucleation sites results in a larger number of smaller crystals. As a result of the smaller crystals formed therein, clarification of the target thermoplastic may also be achieved, although excellent clarity is not always a result. The more uniform, and preferably smaller, the crystal size, the less light is scattered. In such a manner, the clarity of the thermoplastic article itself can be improved. Thus, thermoplastic nucleator compounds are very important to the thermoplastic industry in order to provide enhanced clarity, physical properties and/or faster processing.
As an example of one type of nucleator, dibenzylidene sorbitol derivative compounds are typical nucleator compounds, particularly for polypropylene end-products. Compounds such as 1,3-O-2,4-bis(3,4-dimethylbenzylidene) sorbitol, available from Milliken Chemical under the trade name Millad® 3988 (hereinafter referred to as 3,4-DMDBS), provide excellent nucleation characteristics for target polypropylenes and other polyolefins. Other well known compounds include sodium benzoate, sodium 2,2′-methylene-bis-(4,6-di-tert-butylphenyl) phosphate (from Asahi Denka Kogyo K.K., known as and hereinafter referred to as NA-11), aluminum bis[2,2′-methylene-bis-(4,6-di-tert-butylphenyl)phosphate] (also from Asahi Denka Kogyo K.K., which is understood to be known as and hereinafter referred to as NA-21), talc, and the like. Such compounds all impart high polyolefin crystallization temperatures; however, each also exhibits its own drawback for large-scale industrial applications.
Other acetals of sorbitol and xylitol are typical nucleators for polyolefins and other thermoplastics as well. Dibenzylidene sorbitol (DBS) was first disclosed in U.S. Pat. No. 4,016,118 by Hamada, et al. as effective nucleating and clarifying agents for polyolefin. Since then, large numbers of acetals of sorbitol and xylitol have been disclosed, including bis(p-methylbenzylidene) sorbitol (hereinafter referred to as 4-MDBS). Representative references of such other compounds include Mahaffey, Jr., U.S. Pat. No. 4,371,645 [di-acetals of sorbitol having at least one chlorine or bromine substituent].
As noted above, another example of the effective nucleating agents are the metal salts of organic acids. Wijga in U.S. Pat. Nos. 3,207,735, 3,207,736, and 3,207,738, and Wales in U.S. Pat. Nos. 3,207,737 and 3,207,739, suggest that aliphatic, cycloaliphatic, and aromatic carboxylic, dicarboxylic or higher polycarboxylic acids, and corresponding anhydrides and metal salts, are effective nucleating agents for polyolefin. They further state that benzoic acid type compounds, in particular sodium benzoate, are the best nucleating agents for their target polyolefins.
Another class of nucleating agents was suggested by Nakahara, et al. in U.S. Pat. No. 4,463,113, in which cyclic bis-phenol phosphates was disclosed as nucleating and clarifying agents for polyolefin resins, as well as U.S. Pat. No. 5,342,868 to Kimura, et al. Compounds that are based upon these technologies are marketed under the trade names NA-11 and NA-21, discussed above.
Furthermore, a certain class of bicyclic compounds, such as bicyclic dicarboxylic acid and salts, have been taught as polyolefin nucleating agents as well within Patent Cooperation Treaty Application WO 98/29494, 98/29495 and 98/29496, all assigned to Minnesota Mining and Manufacturing. The best working examples of this technology are embodied in disodium bicyclo[2.2.1]heptene dicarboxylate and camphanic acid.
The efficacy of nucleating agents is typically measured by the peak crystallization temperature of the polymer compositions containing such nucleating agents. A high polymer peak crystallization is indicative of high nucleation efficacy, which generally translates into fast processing cycle time and more desirable physical properties, such as stiffness/impact balance, etc., for the fabricated parts. Compounds mentioned above all impart relatively high polyolefin crystallization temperatures; however, each also exhibits its own drawback for large-scale industrial applications.
For example, it is very desirable that the effective nucleating compounds exhibit a very high peak crystallization temperature, for example, above 125° C. within a test homopolymer polypropylene that, when unnucleated exhibits a number of different characteristics such as a density of about 0.9 g/cc, a melt flow of about 12 g/10 min, a Rockwell Hardness (R scale) of about 90, a tensile strength of about 4,931 psi, an elongation at yield of about 10%, a flexural modulus of about 203 ksi, an Izod impact strength of about 0.67 ft-lb/in, and a deflection temperature at 0.46 mPa of about 93° (which provides a homopolymer exhibiting an isotacticity of between about 96 and 99%), wherein said peak crystallization temperature is measured by differential scanning calorimetry in accorda

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Highly versatile thermoplastic nucleators does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Highly versatile thermoplastic nucleators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Highly versatile thermoplastic nucleators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3021609

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.