Highly selective shell impregnated catalyst of improved...

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Metal – metal oxide or metal hydroxide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S330000, C502S339000

Reexamination Certificate

active

06794332

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to shelled Pd—Au catalyst of particular characteristics, and methods for their production, which are effective for catalyzing the vapor phase reaction of an alkene (such as ethylene) with an alkanoic acid (such as acetic acid) and oxygen to produce an alkenyl alkanoate (such as vinyl acetate) at high values for space-time yield, specific activity, and with a high selectivity for conversion of the alkene to the alkenyl alkanoate (such as ethylene to vinyl acetate).
2. Description of the Related Art
Vinyl acetate (VA) is a commodity chemical in high demand as a monomer for production of poly(vinyl acetate). This important polymer, and its derivatives, finds extensive uses as adhesives, paints and other coatings, films and laminating materials. Many techniques have been reported in the prior art for the production of VA. A chief technique is a catalyzed gas phase reaction of ethylene with acetic acid and oxygen. Today a type of catalyst widely use for this reaction is a surface shell impregnated catalyst of a type as described in U.S. Pat. No. 4,048,096 by T. C. Bissot.
Bissot's U.S. Pat. No. 4,048,096 discloses a catalyst having a specific activity of at least about 83 grams of vinyl acetate per gram of precious metal (Pd+Au) per hour measured at 150° C. and a reaction pressure of 120 psig. The catalyst consists of: (1) catalyst support particles having a particle diameter of from about 3 to about 7 mm and a pore volume of from about 0.2 to about 1.5 ml/g, (2) palladium and gold distributed in a surface layer of the catalyst support extending less than about 0.5 mm into the support, the palladium being present in an amount of from about 1.5 to about 5.0 grams per liter of catalyst, and the gold being present in an amount of from about 0.5 to about 2.25 grams per liter of catalyst, and (3) from about 5 to about 60 grams per liter of catalyst of an alkali metal acetate. Palladium is the active catalyst metal and the gold is a catalyst promoter.
The Bissot '096 patent process for catalyst preparation comprises: (1) impregnating the catalyst support with an aqueous solution of water-soluble palladium and gold compounds, (2) precipitating water-insoluble palladium and gold compounds on the catalyst support surface by contacting the impregnated catalyst support with a solution of compounds (preferably sodium metasilicate) capable of reacting with the water-soluble palladium and gold compounds to form water-insoluble palladium and gold compounds, (3) converting the water-insoluble palladium and gold compounds into palladium and gold metal on the support surface by treatment with a reducing agent, (4) washing the catalyst with water, (5) drying the catalyst, (6) impregnating the catalyst with an alkali metal acetate promoter (e.g., a potassium promoter), and (7) drying the catalyst.
The improvement disclosed in Bissot '096, as compared to prior Pd—Au supported catalysts, involves distributing the catalyst loading of palladium and gold as a surface layer on the catalyst support which is less than about 0.5 millimeter into the support from its surface. The impregnating step is carried out with an aqueous solution of palladium and gold compounds and the total volume of the solution is from about 95 to about 100% of the absorptive capacity of the catalyst support. The precipitating step in Bissot is carried out by soaking the wet catalyst support with a solution of an alkali metal silicate, the amount of alkali silicate being such that, after the alkali metal silicate solution has been in contact with the catalyst support for about 12 to 24 hours, the pH of said solution is from about 6.5 to about 9.5. In all examples of Bissot the reduction of the precipitated compounds to Pd and Au metals is accomplished by reaction with a hydrazine solution.
As is apparent from a reading of the Bissot patent, a major concern in this art of vinyl acetate (VA) production has always been to improve the space-time yield (STY) and also the specific activity (SA) of the catalysts. Since the description of this shell type of catalyst by Bissot others have attempted to improve the catalyst in respect to its space-time yield, specific activity, and/or its selectivity
In U.S. Pat. Nos. 5,179,056; 5,189,004; and 5,342,987 by W. J. Barley it is reported that a shell impregnated catalysts of the Bissot type is improved in respect to its STY if it is essentially free of sodium; such as if it prepared from ingredients that are essentially free of sodium as per the '056 patent, or if its sodium content is removed by washing with water or an aqueous solution of a potassium promoter as in the '004 patent, or by washing the catalyst at an intermediate stage of its production with an ion exchange solution as in the '987 patent. In all of the above patents the exemplified catalyst are reduced with hydrazine solutions. U.S. Pat. No. 5,693,586 reports that a shell impregnated catalysts of the Bissot type which are made from reagents that are all potassium salt compounds are of an improved carbon dioxide selectivity. In this patent all example catalyst are reduced with ethylene at a temperature of 150° C.
Barley et al. in U.S. Pat. No. 5,274,181 reports that a shell impregnated catalysts of the Bissot type is improved in respect to its STY if it is prepared to have, at a Pd loading of 2.5 &mgr;L (0.33 wt %) to 6.1 g/L (1.05 wt %), a weight ratio of Au to Pd in the range of 0.6 to 1.25. All catalyst examples of this patent are reduced by reaction with a hydrazine solution.
U.S. Pat. No. 5,567,839 reports that a shell impregnated catalysts of the Bissot type is improved in respect to its STY if a barium salt rather than a sodium silicate is use to precipitate the Pd and Au compounds into the shell. All catalyst examples of this patent are reduced by reaction with a hydrazine solution.
The selectivity of a palladium-gold catalyst in vinyl acetate synthesis also is influenced by the extent and uniformity of the palladium metal and gold metal distribution on the exterior and/or interior surfaces of a porous catalyst support substrate, such as carbon dioxide selectivity and oxygen conversion in an ethylene, acetic acid and oxygen vapor phase reaction.
Attempts to provide a uniform distribution of the palladium and gold metals on the catalyst support has involved manipulation of the catalyst preparation steps and/or by using support substrates having various specified pore dimensions. Particularly useful improvements in preparing highly active catalysts for vinyl acetate production are disclosed in U.S. Pat. No. 5,314,858 and U.S. Pat. No. 5,332,710. These references describe process embodiments for improving palladium and gold distribution on a support by manipulating the precipitation step in which the water-soluble precious metal compounds are fixed to the support surface as water-insoluble compounds. In U.S. Pat. No. 5,314,858, fixing precious metals on the support is achieved utilizing two separate precipitation stages to avoid using large excesses of fixing agent. U.S. Pat. No. 5,332,710 describes fixing the precious metals by physically rotating an impregnated catalyst support while the impregnated support is immersed in a reaction solution at least during the initial precipitation period. The rotation immersion procedure yields catalysts in which the metals precipitated on the carrier are said to be more evenly distributed in a thin shell on the support surface. All catalyst examples of these patents are reduced with ethylene at a temperature of 150° C.
U.S. Pat. No. 6,420,308 by A. K. Khanmamedova (Khanmamedova'308) showed that the sequence of steps is critical. In Bissot'096 the catalyst was washed after reduction whereas in Khanmamedova'308 the catalyst was washed before reduction and obtained higher space time yield, and higher vinyl acetate selectivity.
Despite such improvements as have been made there is a continuing interest in th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Highly selective shell impregnated catalyst of improved... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Highly selective shell impregnated catalyst of improved..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Highly selective shell impregnated catalyst of improved... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3220885

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.