Electric lamp and discharge devices – With luminescent solid or liquid material – Solid-state type
Reexamination Certificate
2000-12-18
2003-06-03
Philogene, Haissa (Department: 2821)
Electric lamp and discharge devices
With luminescent solid or liquid material
Solid-state type
C428S690000, C257S040000, C315S169100
Reexamination Certificate
active
06573651
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to highly efficient organic light emitting devices (OLEDs) utilizing doped ambipolar conductive molecular organic thin films.
BACKGROUND OF THE INVENTION
Organic light emitting devices (OLEDs), which make use of thin film materials that emit light when excited by electric current, are expected to become an increasingly popular form of flat panel display technology. This is because OLEDs have a wide variety of potential applications, including cell phones, personal digital assistants (PDAs), computer displays, informational displays in vehicles, television monitors, as well as light sources for general illumination. Due to their bright colors, wide viewing angle, compatibility with full motion video, broad temperature ranges, thin and conformable form factor, low power requirements and the potential for low cost manufacturing processes, OLEDs are seen as a future replacement technology for cathode ray tubes (CRTs) and liquid crystal displays (LCDs), which currently dominate the growing $40 billion annual electronic display market. Due to their high luminous efficiencies, electrophosphorescent OLEDs are seen as having the potential to replace incandescent, and perhaps even fluorescent, lamps for certain types of applications.
Light emission from OLEDs is typically via fluorescence or phosphorescence. As used herein, the term “phosphorescence” refers to emission from a triplet excited state of an organic molecule and the term “fluorescence” refers to emission from a singlet excited state of an organic molecule.
Successful utilization of phosphorescence holds enormous promise for organic electroluminescent devices. For example, an advantage of phosphorescence is that all excitons (formed by the recombination of holes and electrons in an EL), which are formed either as a singlet or triplet excited state, may participate in luminescence. This is because the lowest singlet excited state of an organic molecule is typically at a slightly higher energy than the lowest triplet excited state. This means that, for typical phosphorescent organometallic compounds, the lowest singlet excited state may rapidly decay to the lowest triplet excited state from which the phosphorescence is produced. In contrast, only a small percentage (about 25%) of excitons in fluorescent devices are capable of producing the fluorescent luminescence that is obtained from a singlet excited state. The remaining excitons in a fluorescent device, which are produced in the lowest triplet excited state of an organic molecule, are typically not capable of being converted into the energetically unfavorable higher singlet excited states from which the fluorescence is produced. This energy, thus, becomes lost to radiationless decay processes that heat-up the device.
As a consequence, since the discovery that phosphorescent materials can be used as the emissive material in highly efficient OLEDs, there is now much interest in finding still more efficient electrophosphorescent materials and OLED structures containing such materials.
High efficiency organic light emitting devices (OLEDs) using the phosphorescent dopant, fac tris(2-phenylpyridine)iridium (Ir(ppy)
3
), have been demonstrated using several different conducting host materials. M. A. Baldo et al., Nature, vol. 395, 151 (1998); D. F. O'Brien et al., Appl. Phys. Lett., vol. 74, 442 (1999); M. A. Baldo et al., Appl. Phys. Lett., vol. 75, 4 (1999); T. Tsutsui et al., Japanese. J. Appl. Phys., Part 2, vol. 38, L1502 (1999); C. Adachi et al., Appl. Phys. Lett., vol. 77, 904 (2000); M. J. Yang et al., Japanese J. Appl. Phys., Part 2, vol. 39, L828 (2000); and C. L. Lee et al., Appl. Phys. Lett., vol. 77, 2280 (2000). Since the triplet level of the metal-ligand charge transfer state of the green-emitting Ir(ppy)
3
is between 2.5 eV and 3.0 eV, deep blue fluorophores with a peak wavelength at about 400 nm, such as 4,4′-N,N′-dicarbazole-biphenyl (CBP), are likely candidates as triplet energy transfer and exciton confining media. Using 6% to 10%-Ir(ppy)
3
in CBP leads to efficient Ir(ppy)
3
phosphorescence. In addition to the energetic resonance between the dopant and the host, the control of charge carrier injection and transport in the host layers is believed to be necessary for achieving efficient formation of radiative excitons. High electrophosphorescence efficiency has been achieved using Ir(ppy)
3
doped into CBP along with a 2,9-dimethyl-4,7-diphenyl-phenanthroline (BCP) electron transport and exciton blocking layer. M. A. Baldo et al., Appl. Phys. Lett., vol. 75, 4 (1999). In that device, the doped CBP layer was found to readily transport holes.
The compound 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (“m-MTDATA”) was disclosed for use as a hole injecting material in electroluminescent OLEDs in which fluorescence was obtained from an electron transporting layer comprised of tris(8-hydroxyquinoline)aluminum (“Alq
3
”). Shirota et al., Appl. Phys. Lett., vol. 65, No. 7, 807 (1994).
Typically electrophosphorescent OLEDs are comprised of several layers so as to achieve the desired combination of OLED performance characteristics. It would be desirable if the desired combination of OLED performance characteristics, especially including high external quantum efficiency, could be achieved used simplified OLED structures that make use of a smaller number of layers.
SUMMARY OF THE INVENTION
The present invention is directed to simplified OLED structures comprising an anode layer, a hole injecting layer (HIL) in direct contact with the anode layer, an emissive electron transporting layer (ETL) in direct contact with the hole injecting layer, and a cathode layer in direct contact with the emissive electron transporting layer. The hole injecting material used in the hole injecting layer is characterized, in particular, as being an organic material having an ionization potential (IP) that is not more than about 0.7 eV greater than the ionization potential of the material used for the anode layer. The emissive organic electron transporting layer comprises an organic electron transporting material and an organic hole-trapping emissive material, for example, a hole-trapping phosphorescent material.
REFERENCES:
patent: 5540999 (1996-07-01), Yamamoto et al.
patent: 5703436 (1997-12-01), Forrest et al.
patent: 5707745 (1998-01-01), Forrest et al.
patent: 5709959 (1998-01-01), Adachi et al.
patent: 5721160 (1998-02-01), Forrest et al.
patent: 5757026 (1998-05-01), Forrest et al.
patent: 5757139 (1998-05-01), Forrest et al.
patent: 5811833 (1998-09-01), Thompson
patent: 5834893 (1998-11-01), Bulovic et al.
patent: 5844363 (1998-12-01), Gu et al.
patent: 5861219 (1999-01-01), Thompson et al.
patent: 5874803 (1999-02-01), Garbuzov et al.
patent: 5917280 (1999-06-01), Burrows et al.
patent: 5922396 (1999-07-01), Thompson
patent: 5932895 (1999-08-01), Shen et al.
patent: 5953587 (1999-09-01), Forrest et al.
patent: 5981306 (1999-11-01), Burrows et al.
patent: 5986268 (1999-11-01), Forrest et al.
patent: 5986401 (1999-11-01), Thompson et al.
patent: 5998803 (1999-12-01), Forrest et al.
patent: 6005252 (1999-12-01), Forrest et al.
patent: 6013538 (2000-01-01), Burrows et al.
patent: 6013982 (2000-01-01), Thompson et al.
Y. Kunugi, et al., “A Vapochromic LED”,J. Am. Chem. Soc., vol. 120, No. 3, pp. 589-590, 1998.
M. A. Baldo, et al., “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, Sep. 1998, vol. 395, pp. 151-154.
D.F. O'Brien, et al., “Improved energy transfer in electrophosphorescent devices”,Applied Physics Letters, vol. 74, No. 3, pp. 442-444, (Jan. 18, 1999).
M.A. Baldo, et al., “Very high efficiency green organic light-emitting devices based on electrophosphorescence”,Applied Physics Letters, vol. 75, No. 1, pp. 4-6, (1999).
T. Tsutsui et al., “High Quantum Efficiency in Organic Light-Emitting Devices with Iridium-Complex as a Triplet Emissive Center”,Japanese J. Appl. Phys., Part 2, vol. 38, pp. L1502-L1504 (Dec. 15, 1999).
C. Adachi et al., “
Adachi Chihaya
Baldo Marc A.
Forrest Stephen R.
Kenyon & Kenyon
Philogene Haissa
The Trustees of Princeton University
Vo Tuyet T.
LandOfFree
Highly efficient OLEDs using doped ambipolar conductive... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Highly efficient OLEDs using doped ambipolar conductive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Highly efficient OLEDs using doped ambipolar conductive... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3122956