Highly efficient cell-cultivating device

Chemistry: molecular biology and microbiology – Apparatus – Including condition or time responsive control means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S294100, C435S297200, C435S299100

Reexamination Certificate

active

06323022

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to a highly efficient cell-cultivating device.
2. Description of the Related Art
The cell-cultivating industry is increasingly important due to the advances of biotechnology, and the corresponding market is continuously expanding. The characteristics of cells include: slow growth, easy damage by shearing forces and easy contamination by microbes, high cultivation cost, easy cultivation failure, and anchorage-dependence (for most cells). Due to these characteristics, the current cell-cultivating systems are not very successful. A general example of a cell-cultivating system is roller bottles. Each roller bottle can provide an area of only 850-1700 cm
2
for cultivating cells. Therefore, thousands of roller bottles are simultaneously taken care of in the factories, requiring a great deal of labor. Automation of the roller-bottle cell-cultivating system can save labor, but is expensive. Another example of a cell-cultivating systems is a stir tank. The tank has microcarriers inside for growing cells thereon. In this example, however, stirring culture medium and gassing cells considerably threaten growth of the cells. Furthermore, the operation conditions need to be changed when the dimensions of the stirring tank are enlarged (the enlargement is of three dimensions) . Changes of the operation conditions greatly delay the product harvest. In addition, the cells tend to get contaminated when the stirring tank is enlarged. Another example of a cell-cultivating systems is hollow fibers, by which the cell density can be up to 10
8
. In this example, however, the reactor for cultivating cells is a plug-flow type. When the cell density increases to a predetermined level, the cells at the rear end of the reactor cannot obtain nutrition. To avoid such a situation, the reactor generally is not made large, which is the major disadvantage of the hollow fiber reactor. The device of the present invention adopts air/liquid circulation, and therefore is different from all the above-mentioned cell-cultivating systems.
U.S. Pat. No. 5,766,949 is most related to the present invention. It provides a system in which the culture medium oscillates up and down with respect to a substrate means provided in a cell-cultivating apparatus. Also, two storage tanks are provided for the culture medium circulating therebetween. A disadvantage of this system is that the culture medium in the storage tanks is not used to cultivate cells, and thus the use of the culture medium is not efficient. Furthermore, the use of a large substrate means it is necessary to increase the volumes of the storage tanks. Furthermore, two or more peristaltic pumps are simultaneously used to circulate the culture medium, so that control thereof is complicated.
Tissue engineering has been greatly developed in recent times. Artificial tissues such as artificial skins, artificial livers, artificial corneas and artificial blood vessels are produced outside human bodies. Because the number of elderly citizens and citizens suffering from burns or ulcers caused by diabetes are increasing from year to year, the market for artificial skins will be very large in the future. Thus far, the profits of selling artificial skins are very good, allowing companies not to consider reduction of cost by means of mass production. However, any commercial product in the end must face cost competitions. In addition, many kinds of tissue products, such as artificial blood vessels and artificial corneas are produced by processing layers of mammalian cells. Therefore, an apparatus for mass-producing layers of mammalian cells will be required in the future.
In “Biotechnology and Bioengineering, 1993”, Leon M. Wilkins et al. disclose that cultivating skin cells requires a special environment. Specifically, simultaneously growing epithelial cells and endothelial cells to form an artificial skin of three-dimensional structure can be successful only at an air/liquid interface. It is common to use culture vessels to cultivate artificial skins. In this way, however, a culture vessel can produce only one piece of artificial skin. A great deal of labor and spaces are required to mass-produce artificial skins.
WO 98/24880 discloses a cell culture system in which a peelable polymer film is attached to a base of a flask. When a desired number of cells have been attached to the polymer film, the base is removed from the flask and the polymer film is peeled away from the base for applying to the patient. The system is advantageous because removing the artificial skin from the cell culture flask is convenient. However, a culture flask can only produce one piece of artificial skin. Therefore, such a method is not suitable for mass-production.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a cell-cultivating device that solves the above-mentioned problems.
The cell-cultivating device of the present invention includes a plurality of culture tanks and a driving means. The culture tanks communicate with each other and have culture medium inside. The driving means forces the culture medium to flow between the culture tanks so as to vertically oscillate medium levels in the culture tanks.
In contrast to U.S. Pat. No. 5,766,949, the cell-cultivating device of the present invention operates without a buffer tank. The culture medium flows between the culture tanks and is therefore fully used. The driving means is an air compressor, a reversible peristaltic pump, an oil pressure cylinder or an air pressure cylinder, by which the cell-cultivating device is greatly simplified.
The substrate means contains carriers, which can be woven carriers, nonwoven carriers, plates, porous carriers made of ceramics or polymer, tissue engineering scaffold, or other common carriers. The woven carriers and nonwoven carriers are made of, for example, polymer which includes polyamide, polyester, polyurethane, polystyrene, polyaramid, fluorocarbon polymers, polyethylene, polyproplyene and polyvinyl alcohol. The plates are made of hard material such as polystyrene, polycarbonate, polyester, polypropylene, polyvinyl acetate, polyvinylidene chloride, polybutadiene, polyfluorocarbons and plates constructed by fibrous materials.
Furthermore, peelable polymer films are attached to both surfaces of each plate. Therefore, the present invention is superior to WO 598/24880, in which the polymer film can only be attached to one surface of the base. Furthermore, the plates are detachable from the culture tanks. This facilitates the packaging of the product and the application of the product to the patient. The plates are fixed by a supporting structure protruding from the inner walls of the culture tanks. The contact area between the plates and the culture tanks is small. In addition, the plates are taken away from the culture tanks by pulling rather than peeling. The action is not violent. Therefore, the product generally is complete and undamaged.


REFERENCES:
patent: 5316905 (1994-05-01), Mori et al.
patent: 5766949 (1998-06-01), Liau et al.
patent: 5843766 (1998-12-01), Applegate et al.
patent: 4-158781 (1992-06-01), None
patent: 1131899 (1984-12-01), None
patent: WO 98/24880 (1998-06-01), None
Wilkins et al.,Development Of A Bilayered Living Skin Construct For Clinical Applications, Biotech and Bioeng., vol. 43, pp 747-756 (1994).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Highly efficient cell-cultivating device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Highly efficient cell-cultivating device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Highly efficient cell-cultivating device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2589062

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.