Highly diverse library of yeast expression vectors

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007310, C435S320100, C536S023400, C536S023530

Reexamination Certificate

active

06410246

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to compositions, methods and kits for generating libraries of recombinant expression vectors and using these libraries in screening of affinity-binding pairs, and, more particularly, for generating libraries of recombinant human antibodies and screening for their affinity binding with target antigens.
2. Description of Related Art
Antibodies are a diverse class of molecules. Delves, P. J. (1997) “Antibody production: essential techniques”, New York, John Wiley & Sons, pp. 90-113. It is estimated that even in the absence of antigen stimulation a human makes at least 10
15
different antibody molecules—its Permian antibody repertoire. The antigen-binding sites of many antibodies can cross-react with a variety of related but different antigenic determinants, and the Permian repertoire is apparently large enough to ensure that there will be an antigen-binding site to fit almost any potential antigenic determinant, albeit with low affinity.
Structurally, antibodies or immunoglobulins (Igs) are composed of one or more Y-shaped units. For example, immunoglobulin G (IgG) has a molecular weight of 150 kDa and consists of just one of these units. Typically, an antibody can be proteolytically cleaved by the proteinase papain into two identical Fab (fragment antigen binding) fragments and one Fc (fragment crystallizable) fragment. Each Fab contains one binding site for antigen, and the Fc portion of the antibodies mediates other aspects of the immune response.
A typical antibody contains four polypeptides-two identical copies of a heavy (H) chain and two copies of a light (L) chain, forming a general formula H
2
L
2
. Each L chain is attached to one H chain by a disulfide bond. The two H chains are also attached to each other by disulfide bonds. Papain cleaves N-terminal to the disulfide bonds that hold the H chains together. Each of the resulting Fabs consists of an entire L chain plus the N-terminal half of an H chain; the Fc is composed of the C-terminal halves of two H chains. Pepsin cleaves at numerous sites C-terminal to the inter-H disulfide bonds, resulting in the formation of a divalent fragment [F(ab′)] and many small fragments of the Fc portion. IgG heavy chains contain one N-terminal variable (V
H
) plus three C-terminal constant (C
H
1, C
H
2 and C
H
3) regions. Light chains contain one N-terminal variable (V
L
) and one C-terminal constant (C
L
) region each. The different variable and constant regions of either heavy or light chains are of roughly equal length (about 110 amino residues per region). Fabs consist of one V
L
, V
H
, C
H
1, and C
L
region each. The V
L
and V
H
portions contain hypervariable segments (complementarity-determining regions or CDR) that form the antibody combining site.
The V
L
and V
H
portions of a monoclonal antibody have also been linked by a synthetic linker to form a single chain protein (scFv) which retains the same specificity and affinity for the antigen as the monoclonal antibody itself. Bird, R. E., et al. (1988) “Single-chain antigen-binding proteins” Science 242:423-426. A typical scFv is a recombinant polypeptide composed of a V
L
tethered to a V
H
by a designed peptide, such as (Gly
4
-Ser)
3
, that links the carboxyl terminus of the V
L
to the amino terminus of the V
H
sequence. The construction of the DNA sequence encoding a scFv can be achieved by using a universal primer encoding the (Gly
4
-Ser)
3
linker by polymerase chain reactions (PCR). Lake, D. F., et al. (1995) “Generation of diverse single-chain proteins using a universal (Gly
4
-Ser)
3
encoding oligonucleotide” Biotechniques 19:700-702.
The mammalian immune system has evolved unique genetic mechanisms that enable it to generate an almost unlimited number of different light and heavy chains in a remarkably economical way by joining separate gene segments together before they are transcribed. For each type of Ig chain—&kgr; light chains, &lgr; light chains, and heavy chain-there is a separate pool of gene segments from which a single peptide chain is eventually synthesized. Each pool is on a different chromosome and usually contains a large number of gene segments encoding the V region of an Ig chain and a smaller number of gene segments encoding the C region. During B cell development a complete coding sequence for each of the two Ig chains to be synthesized is assembled by site-specific genetic recombination, bringing together the entire coding sequences for a V region and the coding sequence for a C region. In addition, the V region of a light chain is encoded by a DNA sequence assembled from two gene segments—a V gene segment and short joining or J gene segment. The V region of a heavy chain is encoded by a DNA sequence assembled from three gene segments—a V gene segment, a J gene segment and a diversity or D segment.
The large number of inherited V, J and D gene segments available for encoding Ig chains makes a substantial contribution on its own to antibody diversity, but the combinatorial joining of these segments greatly increases this contribution. Further, imprecise joining of gene segments and somatic mutations introduced during the V-D-J segment joining at the pre-B cell stage greatly increases the diversity of the V regions.
After immunization against an antigen, a mammal goes through a process known as affinity maturation to produce antibodies with higher affinity toward the antigen. Such antigien-driven somatic hypermutation fine-tunes antibody responses to a given antigen, presumably due to the accumulation of antibody responses to a given antigen, presumably due to the accumulation of point mutations specifically in both heavy-and light-chain V region coding sequences and a selected expansion of high-affinity antibody-bearing B cell clones.
Great efforts have made to mimic such a natural maturation of antibodies against various antigens, especially antigens associated with diseases such as autoimmune diseases, cancer, AIDS and asthma. In particular, phage display technology has been used extensively to generate large libraries of antibody fragments by exploiting the capability of bacteriophage to express and display biologically functional protein molecule on the its surface. Combinatorial libraries of antibodies have been generated in bacteriophage lambda expression systems which may be screened as bacteriophage plaques or as colonies of lysogens (Huse et al. (1989) Science 246: 1275; Caton and Koprowski (1990) Proc. Natl. Acad. Sci. (U.S.A.) 87: 6450; Mullinax et al (1990) Proc. Natl. Acad. Sci. (U.S.A.) 87: 8095; Persson et al. (1991) Proc. Natl. Acad. Sci. (U.S.A.) 88: 2432). Various embodiments of bacteriophage antibody display libraries and lambda phage expression libraries have been described (Kang et al. (1991) Proc. Natl. Acad. Sci. (U.S.A.) 88: 4363; Clackson et al. (1991) Nature 352: 624; McCafferty et al. (1990) Nature 348: 552; Burton et al. (1991) Proc. Natl. Acad. Sci. (U.S.A.) 88: 10134; Hoogenboom et al. (1991) Nucleic Acids Res. 19: 4133; Chang et al. (1991) J. Immunol. 147: 3610; Breitling et al. (1991) Gene 104:147; Marks et al. (1991) J. Mol. Biol. 222: 581; Barbas et al. (1992) Proc. Natl. Acad. Sci. (U.S.A.) 89: 4457; Hawkins and Winter (1992) J. Immunol. 22: 867; Marks et al. (1992) Biotechnology 10: 779; Marks et al. (1992) J. Biol. Chem. 267: 16007; Lowman et al (1991) Biochemistry 30: 10832; Lerner et al. (1992) Science 258: 1313). Also see review by Rader, C. and Barbas, C. F. (1997) “Phage display of combinatorial antibody libraries” Curr. Opin. Biotechnol. 8:503-508.
Various scFv libraries displayed on bacteriophage coat proteins have been described. Marks et al. (1992) Biotechnology 10: 779; Winter G and Milstein C (1991) Nature 349: 293; Clackson et al. (1991) op.cit.; Marks et al. (1991) J. Mol. Biol. 222: 581; Chaudhary et al. (1990) Proc. Natl. Acad. Sci. (USA) 87: 1066; Chiswell et al. (1992) TIBTECH 10: 80; and Huston et al. (1988) Proc. Natl. Acad. Sci. (USA) 85: 5879.
Generally, a phage library is created by insertin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Highly diverse library of yeast expression vectors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Highly diverse library of yeast expression vectors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Highly diverse library of yeast expression vectors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2965205

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.