Highly asymmetric, hydrophilic, microfiltration membranes...

Plastic and nonmetallic article shaping or treating: processes – Pore forming in situ

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S048000, C264S049000, C210S500410, C210S321600

Reexamination Certificate

active

06565782

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to highly asymmetric, hydrophilic, microfiltration membranes having minimum pore sizes greater than about 0.1 &mgr;m in a minimum pore surface and gradually increasing pore sizes throughout the substructure of the membrane to a coarse pored surface having pore sizes up to about 100 &mgr;m.
2. Background of the Technology
Asymmetric or anisotropic membranes are well known in the art. For example, Wrasidlo in U.S. Pat. Nos. 4,629,563 and 4,774,039 and Zepf in U.S. Pat. Nos. 5,188,734 and 5,171,445, the disclosures of which are hereby incorporated by reference, each disclose asymmetric or anisotropic membranes and methods for their production. Each of the Wrasidlo and Zepf patents discloses integral, highly asymmetric, microporous membranes, having high flow rates and excellent retention properties. The membranes are generally prepared through a modified “phase inversion” process using a metastable two-phase liquid dispersion of polymer in solvent
onsolvent systems which is cast and subsequently contacted with a nonsolvent. The Zepf patent discloses an improvement over the Wrasidlo patent.
Phase inversion processes generally proceed through the steps of: (i) casting a solution or a mixture comprising a suitably high molecular weight polymer(s), a solvent(s), and a nonsolvent(s) into a thin film, tube, or hollow fiber, and (ii) precipitating the polymer through one or more of the following mechanisms:
(a) evaporation of the solvent and nonsolvent (dry process);
(b) exposure to a nonsolvent vapor, such as water vapor, which absorbs on the exposed surface (vapor phase-induced precipitation process);
(c) quenching in a nonsolvent liquid, generally water (wet process); or
(d) thermally quenching a hot film so that the solubility of the polymer is suddenly greatly reduced (thermal process).
Schematically, the inversion in phase from a solution to a gel proceeds as follows:
Essentially, SOL 1 is a homogenous solution, SOL 2 is a dispersion, and the Gel is the formed polymer matrix. The event or events that triggers SOL 2 formation depends on the phase inversion process used. Generally, however, the triggering event or events revolves around polymer solubility in the SOL. In the wet process, SOL 1 is cast and contacted with a nonsolvent for the polymer which triggers the formation of SOL 2 which then “precipitates” to a Gel. In the vapor phase-induced precipitation process, SOL 1 is cast and exposed to a gaseous atmosphere including a nonsolvent for the polymer which triggers the formation of SOL 2 which then “precipitates” to a Gel. In the thermal process, SOL 1 is cast and the temperature of the cast film is reduced to produce SOL 2 which then “precipitates” to a Gel. In the dry process, SOL 1 is cast and contacted with a gaseous atmosphere (such as air) which allows evaporation of one or more of the solvents which triggers the formation of SOL 2 which then “precipitates” to a Gel.
The nonsolvent in the casting dope is not necessarily completely inert toward the polymer, and in fact it usually is not and is often referred to as swelling agent. In the Wrasidlo-type formulations, as discussed later, selection of both the type and the concentration of the nonsolvent is important in that it is the primary factor in determining whether or not the dope will exist in a phase separated condition.
In general, the nonsolvent is the primary pore forming agent, and its concentration in the dope greatly influences the pore size and pore size distribution in the final membrane. The polymer concentration also influences pore size, but not as significantly as does the nonsolvent. It does, however, affect the membrane's strength and porosity. In addition to the major components in the casting solution, or dope, there can be minor ingredients, such as, for example, surfactants or release agents.
Polysulfone is especially amenable to formation of highly asymmetric membranes, particularly in the two-phase Wrasidlo formulations. These are not homogeneous solutions but consist of two separate phases: one a solvent-rich clear solution of lower molecular weight polymer at low concentrations (e.g., 7%); and the other a polymer-rich turbid (colloidal) solution of higher molecular weight polymer at high concentrations (e.g., 17%). The two phases contain the same three ingredients, that is, polymer, solvent, and nonsolvent, but in radically different concentrations and molecular weight distributions. Most importantly, the two phases are insoluble in one another and, if allowed to stand, will separate. The mix must be maintained as a dispersion, with constant agitation up until the time that it is cast as a film. Essentially, in Wrasidlo type formulations, the casting dope is provided in a SOL 2 (dispersion) condition. Thus, the dispersion serves as the starting point for gel formation and not as the intermediate step (above), as follows:
This process modification was largely responsible for the higher degrees of asymmetry and uniform consistency of the Wrasidlo Membranes as compared to the prior art.
It is the nonsolvent and its concentration in the casting mix that produces phase separation, and not every nonsolvent will do this. The two phases will separate from one another if allowed to stand, but each individual phase by itself is quite stable. If the temperature of the mix is changed, phase transfer occurs. Heating generates more of the clear phase; cooling does the reverse. Concentration changes have the same effect, but there is a critical concentration range, or window, in which the phase separated system can exist, as discussed by Wrasidlo. Wrasidlo defines this region of instability on a phase diagram of thus dispersed polymer/solvent
onsolvent at constant temperature, lying within the spinodal or between spinodal and binodal curves, wherein there exist two macroscopically separated layers.
Because of the great hydrophobicity of the polymer and because of the thermodynamically unstable condition of the casting mix, wherein there pre-exist two phases, one solvent-rich and the other polymer-rich (a condition that other systems must pass through when undergoing phase inversion), the unstable Wrasidlo mixes precipitate very rapidly when quenched so as to form a microporous skin at the interface and consequently develop into highly asymmetric membranes, a structure shared by the membranes of each of the Wrasidlo and Zepf patents.
“Asymmetric” as used in the context of the Wrasidlo patents refers to membranes that possess a progressive change in pore size across the cross-section between the microporous skin and the substructure. The progressive asymmetry of Wrasidlo-type membranes stands in contrast to reverse osmosis and most ultrafiltration membranes which have abrupt discontinuities between a “nonmicroporous skin” and substructure and are also referred to in the art as asymmetric.
The microporous skin is the fine pored side of the membrane that constitutes the air-solution interface or the quench-solution interface during casting. In the Wrasidlo patent, and in this disclosure, it is understood that the term “skin” does not indicate the relatively thick, nearly impervious layer of polymer that is present in some membranes. Herein, the microporous skin is a relatively thin, porous surface that overlies a microporous region of variable thickness. The pores of the underlying microporous region may be the same size as, or somewhat smaller than, the skin pores. In an asymmetric membrane, the pores of the microporous region gradually increase in size as they lead from the skin to the opposite face of the membrane. The region of gradual pore size increase is sometimes referred to as the asymmetric region, and the opposite, non-skin face of the membrane is often referred to as the coarse pored surface. As a contrast to the coarse pored surface, the skin is also sometimes called the microporous surface.
Polymeric membranes can also be cast from homogeneous solutions of polymer. The composition of these formulations lies o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Highly asymmetric, hydrophilic, microfiltration membranes... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Highly asymmetric, hydrophilic, microfiltration membranes..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Highly asymmetric, hydrophilic, microfiltration membranes... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3003858

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.