High volume uplink in a broadband satellite communications...

Telecommunications – Carrier wave repeater or relay system – Portable or mobile repeater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S427000, C455S428000, C370S323000, C370S325000

Reexamination Certificate

active

06804492

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to communication systems, and is more particularly related to providing bandwidth-on-demand in a switching communication system.
2. Discussion of the Background
As society, in general, become increasingly reliant on communication networks to conduct a variety of activities, ranging from business transactions to personal entertainment, communication engineers continually face the challenges of optimizing use of network capacity and ensuring network availability to a diverse set of users with varying traffic requirements. Because capacity requirements of different users, for that matter of the same users, can fluctuate depending on time day and applications, the accuracy of traffic forecasts is diminished. Inaccurate forecasts can lead to negative effects, such as traffic congestion, slow response times, or even loss data. The maturity of electronic commerce and acceptance of the Internet as a daily tool by millions of users (this user base continues to grow) only intensify the need to develop techniques to streamline capacity usage. With the advances in processing power of desktop computers, the average user has grown accustomed to sophisticated multimedia applications, which place tremendous strain on network resources (e.g., switch capacity). Also, because the decrease in application response times is a direct result of the increased processor performance, the user has grown less tolerant of network delays, demanding comparable improvements in the network infrastructure. Therefore, efficient use of network capacity is imperative, particularly in systems where capacity needs to be managed carefully, such as a satellite network.
Satellite communications systems have emerged as an accessible and reliable network infrastructure that can support the exchange of voice, video, and data traffic. Conventionally, these satellite communications systems offer dedicated communication channels that relay or tunnel traffic without processing such traffic (i.e., “bent-pipe”). That is, the system has no knowledge of what types of protocols are used or data that is contained within the packets. One drawback with these satellite communications systems is that they are highly inefficient with respect to bandwidth allocation to the numerous satellite terminals (STs). For example, if the satellite has excess transponder bandwidth at a particular time, this excess capacity cannot be temporality reallocated to another ST. Another drawback is that the satellite cannot perform any processing on the received traffic; thus, key networking functions, such as flow control and congestion control, are not available. Yet another drawback concerns the inflexibility of the system to adapt dynamically to the traffic requirements of the STs. Given the bursty nature of Internet traffic, traffic emanating from the STs can vary greatly, thereby making it technically impractical to adjust the static channel assignments of the traditional bent-pipe satellite systems.
Based on the foregoing, there is a clear need for improved approaches for transporting traffic over a satellite communications system.
There is also a need to enhance efficient utilization of the system capacity.
There is also a need to employ a flexible architecture that provides increased network functionalities.
There is a further need to dynamically adapt to bandwidth requirements of the satellite terminals.
Based on the need to improve system efficiency, an approach for providing an optimized bandwidth-on-demand (BoD) system is highly desirable.
SUMMARY OF THE INVENTION
According to one aspect of the invention, a method is provided for exchanging data in a communications system that includes a controller coupled to a switch. The method includes receiving a message requesting bandwidth from a processor. The method also includes selectively granting the bandwidth request by a bandwidth controller, and transmitting an assignment message that specifies a bandwidth allocation based upon the granting step to the processor. Further, the method includes initiating transmission of a control message to the controller to provide bandwidth allocation information concurrently with the transmitting step. Under this approach, the system capacity is efficiently utilized.
According to another aspect of the invention, a communications system for exchanging data is disclosed. A bandwidth controller is configured to receive a message requesting bandwidth from a remote processor and to selectively grant the bandwidth request. The bandwidth controller transmits an assignment message that specifies a bandwidth allocation to the remote processor and concurrently transmits a control message. A switch is configured to forward the assignment message to the remote processor. A controller is coupled to the switch and configured to receive the control message, wherein the control message provides bandwidth allocation. The above arrangement advantageously adapts dynamically to bandwidth requirements of the satellite terminals.
According to another aspect of the invention, a communications system that has a controller coupled to a switch includes means for receiving a message requesting bandwidth from a processor. The system also includes means for selectively granting the bandwidth request, and means for transmitting an assignment message that specifies a bandwidth allocation based upon the bandwidth request to the processor. The system further includes means for initiating transmission of a control message to the controller to provide bandwidth allocation information concurrently with the transmission of the assignment message. The above arrangement advantageously enhances system throughput.
According to another aspect of the invention, a satellite communications system that includes a satellite having a payload control computer is provided. A switch is coupled to the payload control computer and is configured to forward data from a terminal. The terminal is configured to transmit a message requesting bandwidth over a communication network that is separate from the satellite communications system A bandwidth control processor is located remotely from the payload control computer of the satellite and is configured to transmit an assignment message that selectively specifies a bandwidth allocation over the communication network to the terminal, and to concurrently initiate transmission of a control message to the satellite to provide bandwidth allocation information to the payload control computer. The above arrangement advantageously distributes bandwidth control functionalities to avoid processing delays.
In yet another aspect of the invention, a computer-readable medium carrying one or more sequences of one or more instructions for exchanging data in a communications system that includes a controller coupled to a switch is disclosed. The one or more sequences of one or more instructions include instructions which, when executed by one or more processors, cause the one or more processors to perform the step of receiving a message requesting bandwidth from a processor. Other steps include selectively granting the bandwidth request, and transmitting an assignment message that specifies a bandwidth allocation based upon the granting step to the processor. Another step includes initiating transmission of a control message to the controller to provide bandwidth allocation information concurrently with the transmitting step. This approach advantageously provides a flexible architecture for the transmission of data traffic.


REFERENCES:
patent: 5926745 (1999-07-01), Threadgill et al.
patent: 6141534 (2000-10-01), Snell et al.
patent: 6205319 (2001-03-01), Wiswell et al.
patent: 6246360 (2001-06-01), Brand et al.
patent: 6366761 (2002-04-01), Montpetit
patent: 6366776 (2002-04-01), Wright et al.
patent: 6665518 (2003-12-01), Courtney et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High volume uplink in a broadband satellite communications... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High volume uplink in a broadband satellite communications..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High volume uplink in a broadband satellite communications... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3288594

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.