High voltage electrical handling device enclosure

Electricity: conductors and insulators – Boxes and housings

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S058000, C220S004020, C049S142000, C312S326000

Reexamination Certificate

active

06770810

ABSTRACT:

FIELD OF INVENTION
The present invention relates in general to the application of enclosures and designs thereof for isolating and protecting high voltage electrical apparati.
BACKGROUND OF THE INVENTION
In electric utility networks, electrical power switchyards or utility stations and substations are commonplace to house and isolate electrical apparati such as power transformers, circuit breakers and switch gears which are essential for the transmission and distribution of electricity. In design, the transformers are conventionally connected to switching networks containing circuit breakers and switch gears to which the power lines are connected.
For example, a power transformer is a device for transferring electrical energy from one alternating-current circuit to another with a change in voltage, current, and/or phase. Commonly, a transformer consists of primary and secondary electrical windings that are magnetically linked via a ferromagnetic core (laminated or otherwise) in which the number of turns in each winding, hence the turns ratio between the windings, are varied so to manipulate the input and output characteristics of the transformer in accordance with Faraday's law. Accordingly, a transformer, depending on the turns ratio of its windings, may be classified as a step-up or a step-down transformer in its ability to generate a higher or lower output (secondary) voltage relative to the input (primary) voltage, respectively. A transformer that steps-up voltage would step-down current and vice versa and it is this ability of the transformer to increase or decrease voltage and current which lends to its primary use for the economical transmission and distribution of electrical power. For instance, step-up transformers are often used to transfer electrical energy from the generators to the transmission lines (voltages as high as about 750,000 volts) while step-down transformers from the transmission lines to the end-users (voltages of about 120 to about 240 volts). Most commercial transformers used are capable of handling single-phase or multiple-phase alternating current circuits in that, for example, a three-phase transformer would consist of three single-phase transformers constructed onto a single core. The gauge and material of the wires and the size, material and design of the core will overall determine the power handling capacity of a transformer.
By definition, transformers can be classified as distribution and transmission or power transformers. A distribution transformer (in accordance with the U.S. Department of Energy and ANSI IEEE C57.12.80-1978 (subsection 2.3.1.1)) is a transformer with a primary voltage of about 480 V to about 35 kV, a secondary voltage of about 120 V to about 600 V, a frequency of about 55-65 Hz, and a capacity of either about 10 kVA to about 2500 kVA for liquid-immersed transformers or about 0.25 kVA to about 2500 kVA for dry-type transformers. A transmission or power transformer, in comparison, is a transformer capable of handling primary and secondary voltages as well as capacities greater than those of a distribution transformer.
Low voltage distribution transformers are currently commercially available with diverse attributes. Due to the relatively lower voltages and currents involved, the input and output terminals (for conductor connections) are congregated on a single surface (usually the front) of the transformer. To further improve safety, pad-mounted distribution transformers are typically supplied only with bushing wells with molded rubber components for insulating energized componentry and inserts and elbows for insulated conductor connections. These attributes are industrially referred to as the “dead-front” design. Essentially, the dead-front layout is so designed or constructed to eliminate the exposure of and fully insulate current-carrying or energized parts that are normally exposed on the front of the transformer hence to simulate continuous and insulated conduction between the input or output conductor and the conductor connected to the windings of the transformer without any intervening functional componentry such as an insulator. In view of the above and the relatively lower hazards associated therewith, pad mounting of said distribution transformers at ground level with minimum containment measures is common practice in the industry. Examples of pad mounted, dead-front, low voltage systems are taught in Adkins et al. in Canadian Patent Application Number 2,217,619; Haubein in U.S. Pat. No. 3,784,727; Grannis in U.S. Pat. No. 3,841,032; Borgmeyer et al. in U.S. Pat. No. 4,533,786; Marusinic in U.S. Pat. No. 5,783,775; Reineke et al. in U.S. Pat. No. 6,066,802; and Book in U.S. Pat. No. 6,142,572 and Canadian Patent Number 1,287,868. These citations do not teach enclosure systems for live-front, high voltage transmission transformers.
Conversely, the significantly higher power ratings and voltages handled by transmission transformers render the use of the dead-front design impractical owing to the larger corona fields associated with high voltage conductor terminals and transmission transformers are currently only available in the live-front format in that glass or porcelain bushings with eyebolt or spade type terminals forming insulators are extended through the top side of the transformer so to insulate the transformer from the energized conductor terminals which insulator and conductor terminals and are fully exposed for connection to the conductors.
Transmission transformers are rated by their primary and secondary voltage relationship and their power carrying capability. For instance, a substation transformer rated at 66-13 kV and 5,000 kVA means that the primary or high voltage is 66,000 V, the secondary or low voltage is 13,000 V and the transformer has a power rating of 5,000,000 VA. Substation transformers, like most distribution transformers, consist of a core and coils immersed in oil in a steel casing. The oil serves as an insulator and coolant to maintain reliable operating temperatures, and certain transmission transformers incorporate pumps to circulate oil for better heat transfer, fins for the oil to circulate through and fans to force air across the fins.
To safeguard against the danger associated with prominently exposed energized componentry inherent with the live-front design of transmission transformers, the positioning of transmission transformers therefore requires pole mounting and/or isolation within large secured switch yard or substations. None of the above citations teach any enclosure system that can offer safety, security and cost savings that would be associated with pad mounting of live-front high voltage transmission transformers.
In view of the foregoing, the present invention provides a solution to containment of exposed high voltage electrical componentry, such as the insulator connections and the conductor terminals of a high voltage, live-front, transmission transformer, thereby reducing or eliminating the necessity for a conventional switchyard or substation and costs thereof.
SUMMARY OF THE INVENTION
An object of the invention is to provide novel means to contain and protect high voltage electrical apparati with exposed componentry thereby reducing or even eliminating the necessity for, and the high costs associated with conventional means for such containment and protection.
Another object of the invention is to provide a secure enclosure system for high voltage electrical apparati so to permit the placement of said high voltage electrical apparati at ground level.
According to a first aspect of the present invention there is provided a high voltage electrical handling device comprising a housing containing high voltage electrical componentry and at least one connector supported externally of the housing in communication with the high voltage electrical componentry, said at least one connector being at a high voltage and having a surrounding electrical corona field;
wherein the improvement comprises an enclosure comprising walls connected to the housing and surrounding

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High voltage electrical handling device enclosure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High voltage electrical handling device enclosure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High voltage electrical handling device enclosure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281410

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.