High toughness heat-resistant steel, turbine rotor and...

Fluid reaction surfaces (i.e. – impellers) – Specific blade structure – Coating – specific composition or characteristic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S200000, C415S216100, C420S038000, C420S069000, C148S609000, C148S610000

Reexamination Certificate

active

06193469

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a high toughness heat-resistant steel, a turbine rotor and a method of producing the same, and more particularly, to improvements in material of the high toughness heat-resistant steel used for high/low pressure combined type turbine rotor and the like which are especially suitable for a power plant aiming at a large volume and high efficiency.
In general, in a steam turbine in which a plurality of turbine rotors are mechanically coupled together, materials for the rotors are selected in accordance with steam conditions used from the high pressure side to the low pressure side. For example, CrMoV steel (ASTM-A470 (class 8)) or 12Cr steel (Japanese Patent Application Publication No.60-54385) is used as a material for turbine rotor used at the side of high temperature (550 to 600° C.) and high pressure, and NiCrMoV steel (ASTM-A471 (classes 2 to 7)) including 2.5% or more of Ni is used as a material for turbine rotor used at the side of low temperature (400° C. or lower) and high pressure.
In a recent power plant achieving large volume and high efficiency, a so-called high/low pressure combined type turbine rotor in which a high pressure side portion and a low pressure side portion are integrally formed of the same material has attracted attention, in view of miniaturization of the steam turbine and simplification of the structure.
However, since the conventional steel for the above-described turbine rotor is not a material intended to be used under the condition which covers all of the requirements from the high pressure side to the low pressure side, if such a conventional steel is used to form the high/low pressure combined type turbine rotor, the following problems are present:
1): In the case of CrMoV steel, although it is excellent in creep rupture strength in a high temperature region of about 550° C., its tensile strength and toughness are not always satisfactory in a low temperature region, and ductile fracture, brittle fracture or the like are likely to occur. Thus, to counteract this, it is necessary to reduce stress acting on the lower pressure portion of the turbine rotor. As a result, the size of a blade mounted at a low pressure stage, especially at the final stage is restricted. From this point of view, it is difficult to increase the volume of a power plant. Further, also with respect to high temperature creep rupture strength, CrMoV steel does not always satisfy the condition of high temperature (about 600° C.) and high pressure of steam at the entrance of a turbine that is required for enhancing the efficiency of a power plant.
2) In the case of 12Cr steel, this steel is superior to CrMoV steel in high temperature creep rupture strength, and thus can satisfy the above-described condition for the steam at the entrance of the turbine. However, since this steel does not have enough toughness, a countermeasure also is required as in the case of CrMoV steel, and the size of blade that can be mounted at the low pressure stage is limited.
3) In the case of NiCrMoV steel, although this steel has excellent tensile strength and toughness at the low temperature region, its creep rupture strength is not always satisfactory, and since the strength of this steel used at the high pressure side is not sufficient, it is necessary to limit the degree of high temperature of the steam at entrance of turbine, and it is difficult to enhance the efficiency of the power plant.
As described above, when a high/low pressure combined type turbine rotor is formed using the conventional steel, there is a problem that a great restriction can not be avoided when an effort is made for increasing volume and enhancing the efficiency in a steam turbine in which a long low pressure final stage blade is mounted.
SUMMARY OF THE INVENTION
The present invention has been accomplished in view of the conventional problems, and it is an object of the invention to provide a heat-resistant steel having excellent characteristics in both tensile strength and toughness at a relatively low temperature region and creep rupture strength at a high temperature region.
Further, it is another object of the invention to provide a turbine rotor such as high/low pressure combined type turbine rotor suitable for a power plant requiring a large volume and high efficiency.
To achieve the above objects, a high toughness heat-resistant steel according to the present invention has a composition comprising: 0.05 to 0.30 wt % C, 0.20 wt % or less Si, 1.0 wt % or less Mn, 8.0 to 14.0 wt % Cr, 0.5 to 3.0 wt % Mo, 0.10 to 0.50 wt % V, 1.5 to 5.0 wt % Ni, 0.01 to 0.50 wt % Nb, 0.01 to 0.08 wt % N, 0.001 to 0.020 wt % B, the balance being Fe and unavoidable impurities. Preferably, the high toughness heat-resistant steel further includes 0.5 to 6.0 wt % Co.
A high toughness heat-resistant steel according to another example of the present invention has a composition comprising: 0.05 to 0.30 wt % C, 0 to 0.20 wt % Si, 0 to 1.0 wt % Mn, 8.0 to 14.0 wt % Cr, 0.1 to 2.0 wt % Mo, 0.3 to 5.0 wt % W, 0.10 to 0.50 wt % V, 1.5 to 5.0 wt % Ni, 0.01 to 0.50 wt % Nb, 0.01 to 0.08 wt % N, 0.001 to 0.020 wt % B, the balance being Fe and unavoidable impurities. Preferably, the high toughness heat-resistant steel further includes 0.5 to 6.0 wt % Co.
The reason for limiting the ranges of contents of compositions of each of the elements in the high toughness heat-resistant steel of the present invention will be described below. Here, it should be noted that % showing composition (content) of each the elements means % by weight, unless there is a description to the contrary.
C is bonded to elements such as Cr, Nb and V to form carbohydrate and contributes to strengthening precipitation, and is an indispensable element for enhancing the hardening properties or for suppressing the generation of &dgr; ferrite. Here, if an amount of C added is less than 0.05%, a desired creep rupture strength can not be obtained, and if the amount of C added exceeds 0.30%, this facilitates coarsening carbohydrate, and the creep rupture strength over long time period is lowered. Therefore, C content is set in a range of 0.05% to 0.30%, preferably, in a range of 0.07% to 0.25%, and more preferably, in a range of 0.09% to 0.20%.
Si is a necessary element as a deoxidizer at the time of melting. However, if a large amount of Si is added, a portion thereof remains in the steel as an oxide to lower the toughness. Therefore, Si content is set in a range of 0.20% or less.
Mn is a necessary element as a deoxidizer or desulfurizing agent at the time of melting. However, if a large amount of Mn is added, the creep rupture strength of the steel is lowered and therefore, Mn content is set in a range of 1.0% or less.
Cr is a necessary element as a component element of M23C6-type precipitation which enhances antioxidation properties and anticurrosiveness, and contributes to strengthen the solid solution and precipitation. However, if an amount of Cr added is less than 8.0%, its effect is small, and if the amount of Cr added exceeds 14.0%, &dgr; ferrite which is harmful for toughness and creep rupture strength is prone to be generated. Therefore, Cr content is set in a range of 8.0% to 14.0%, preferably, in a range of 9.0% to 13.0%, and more preferably, in a range of 9.5% to 12.5%.
Mo is a necessary element as a component element as a solid solution strengthen element and carbohydrate. However, if an amount of Mo added is less than 0.5%, such effects are small, and if the amount of Mo added exceeds 3.0%, toughness is significantly lowered, and &dgr; ferrite is prone to be generated. Therefore, Mo content is set in a range of 0.5% to 3.0%, preferably, in a range of 0.7% to 2.5%, and more preferably, in a range of 0.9% to 2.0%.
Here, if W (which will be described later) which exhibits substantially the same function as that of Mo is to be added, if an amount of Mo added is less than 0.1%, its effects as a solid solution strengthening element and a carbohydrate element are small, and if the amount of W added exceeds 2.0%, toughness

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High toughness heat-resistant steel, turbine rotor and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High toughness heat-resistant steel, turbine rotor and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High toughness heat-resistant steel, turbine rotor and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2607439

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.