High texture factor

Electricity: conductors and insulators – Conduits – cables or conductors – Superconductors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S599000, C427S062000, C505S431000, C505S887000

Reexamination Certificate

active

06331675

ABSTRACT:

This invention relates to a process for converting oxide superconducting precursors into textured and densified oxide superconductor articles. This invention further relates to a method for preparing an oxide superconducting composite in a minimum of processing steps.
BACKGROUND OF THE INVENTION
Superconductors are materials having essentially zero resistance to the flow of electrical current at temperatures below a critical temperature, T
c
. A variety of copper oxide materials have been observed to exhibit superconductivity at relatively high temperatures, i.e., above 77K. Since the discovery of the copper oxide-based superconductors, their physical and chemical properties have been widely studied and described in many publications, too numerous to be listed individually.
Composites of superconducting materials and metals are often used to obtain better mechanical and electrical properties than superconducting materials alone provide. These composites may be prepared in elongated forms such as wires and tapes by a well-known process which includes the stages of: (a) forming a powder of superconductor precursor material (precursor powder formation stage); (b) filling a metal container, such as a tube, billet or grooved sheet, with the precursor powder and deformation processing one or more filled containers to provide a composite of reduced cross-section including one or more cores (filaments) of superconductor precursor material in a surrounding metal matrix (composite precursor fabrication stage); and (c) further thermally processing the composite to form and sinter a core material having the desired superconducting properties (thermomechanical processing).
In order to be useful for the majority of applications, substantially single phase superconducting materials with high critical current densities (J
c
) are needed. The current-carrying capacity of a superconducting oxide depends significantly upon the degree of alignment and connection of the superconducting oxide grains, together known as “texturing”. The processing of such high-performance superconducting materials may be constrained by the necessity of texturing and densifying the material in order to achieve adequate critical current density. The need to add additional processing steps into the manufacture of an oxide superconductor article in order to achieve adequate critical current density adds significantly to the cost of the final article.
Known processing methods for texturing superconducting oxide composites include various forms of heat treatments and deformation processing (thermomechanical processing). Certain superconducting oxide grains can be oriented along the direction of an applied strain, a phenomenon known as deformation-induced texturing (DIT). Deformation techniques, such as pressing and rolling, have been used to induce grain alignment of the oxide superconductor c-axis perpendicular to the plane or direction of elongation. Heat treatment under conditions which at least partially melt and regrow desired superconducting phases also may promote texturing by enhancing the anisotropic growth of the superconducting grains, a phenomenon known as reaction-induced texturing (RIT).
Typically, density and degree of texture are developed in the article by repeated steps of deformation (to impart deformation-induced texturing) and sintering (to impart reaction-induced texturing). The steps of deforming and sintering may be carried out several times, resulting in a process that is both time consuming and expensive. The process may be designated by the term “nDS”, in which “D” refers to the deformation step, “S” refers to the sintering or heating step and “n” refers to the number of times the repetitive process of deformation and sintering are carried out. Typical prior art processes are 2DS or 3DS processes.
It is desirable, therefore, to provide a method for preparing a superconducting article having critical current densities acceptable to the art in fewer steps. It is desirable to minimize the number of process steps required while obtaining an acceptable degree of texture and oxide density. In particular, it is desirable to prepare such a superconducting article using a simplified deformation-sintering process which reduces the amount of processing steps required to obtain a superconducting oxide article having adequate critical current. In determining adequate critical current, price to performance ratio ($/KA·m) should be minimized.
The prior art has investigated many texturing processes, but have been unable to reduce the deformation-sintering process to a single iteration, that is a 1DS process while retaining acceptable electrical properties. Chen et al. in U.S. Pat. No. 5,208,215 reports a method of gradually reducing the thickness of a superconducting oxide tape through at least two pressing steps, each pressing step followed by a heating step at 843° C., thus reporting at least a 2DS process. Sumitomo Electric Industries, in New Zealand Application No. 230404, reports on 2DS processes for improving high critical current density, in which a variety of processing conditions such as sintering temperatures and times, cooling rates, percent deformation and deformation loads were investigated.
Hikata et al. in U.S. Pat. No. 5,246,917 reports the use of a 2DS or 3DS process for improving critical current density of an oxide superconducting wire which utilizes second rollers for the second rolling process which are at least 5 cm larger than those used in the first rolling step. Sumitomo Electric Industries in EP 0 504 908 A1 reports a 2DS process in which the rolling operation is carried out with rollers having an increased frictional force.
Likewise, Sumitomo Electric Industries, in EP 0 435 286 A1 (“EP '286”), reports a two-step rolling operation for a monofilament wire. Large reduction rolling drafts are used to form a flattened tape, however, EP '286 discloses that a subsequent rolling operation at smaller drafts is performed before the final heat treatment, thereby teaching a 2DS process. Further, the thicknesses of monofilament wires make it difficult to obtain crack-free high performance wires in a single rolling operation.
Some 1DS processes have been reported; however, they do not result in oxide superconducting wire having acceptable critical current densities. Takahashi et al. in U.S. Pat. No. 5,093,314 disclose a perovskite oxide superconductor monofilament wire prepared by subjecting the wire to repeated extrusions, followed by rolling and heat treatment (a 1DS process) However, Takahashi et al. report performing deformation operations on fully formed oxide superconductor powders which are known to respond poorly to RIT and DIT processes. The fully formed oxide superconductor is not well suited to RIT because the product oxide has already been formed. For example, critical current densities reported by Takahashi et al. are no greater than 3800 A/cm
2
for a BSCCO sample.
In a similar fashion, Sumitomo Electric Industries, in EP 0 281 477 A2, 2 describes a process for manufacture of an oxide superconductor in which the oxide superconductor powder is first formed and then introduced into a metallic tube and plastically deformed under compressive strain. Such a method suffers from limitations similar to those mentioned above for Takahashi et al.
Common deformation techniques in nDS processes include extrusion, drawing, rolling or pressing. Common measures of the effectiveness of the deformation process are expressed as degree of texture, core hardness and core density. Increased core hardness has been associated with improved texturing and core density. Core hardness is a measurement of the hardness of the material as determined by a standard test, such as an indent test. Core density is the density of the oxide powder. Degree of texturing is represented by a fraction between one and zero, with one representing 100% alignment of the c-axes of the oxide grains, such that their slip planes are parallel.
Uniaxial pressing may be an effective method of both aligning the anisotropic oxid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High texture factor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High texture factor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High texture factor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2566540

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.