High temperature, low oxidation stabilization of pitch fibers

Mineral oils: processes and products – Oxidation of mineral oils – To form asphalts – tars or pitches

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C208S004000, C208S039000, C208S044000, C423S447600, C423S447700

Reexamination Certificate

active

06582588

ABSTRACT:

I. BACKGROUND OF THE INVENTION
This invention relates to the field of preparing carbon fibers from carbonaceous pitches. A typical process for manufacturing pitch based carbon fibers may include the following steps: (1) preparing a suitable pitch for spinning; (2) spinning the pitch into as-spun pitch fibers; (3) thermosetting (stabilizing) the pitch fibers to render them infusible, i.e. unmeltable; and, (4) carbonizing the fibers by heating the stabilized fibers to carbonization temperatures.
In the described process, the as-spun pitch fiber of step (2) is a thermoplastic material. Thus, additional heating of the fiber results in melting and loss of fiber structure. Therefore, prior to carbonization, the fiber must be rendered unmeltable, i.e. thermoset. The thermosetting process is commonly known as oxidative stabilization due to the heating of the fiber in the presence of an oxidizing agent. Typical stabilization processes expose the as-spun fibers to a high concentration of oxidizing agent at an initial process temperature lower than the fiber's spinning temperature.
The stabilization process involves temperature dependent diffusion of oxygen into the fiber where the oxygen reacts with and promotes cross-linking of the pitch molecules. Because the reaction rate is temperature dependent, lower stabilization temperatures require longer times to complete the oxidative stabilization of the fiber. The total oxygen required for stabilization will depend on the nature of the pitch. Generally, low softening point pitches require long periods of time and more oxygen to complete the stabilization process. Typically, the oxidizing agent is air (approximately 21% oxygen).
To improve operating economics, one would prefer to stabilize (thermoset) the as-spun fiber at high temperatures under high oxygen concentrations in order to complete the stabilization process in the shortest period of time. Unfortunately, high oxygen concentrations and elevated temperatures increase the possibility of uncontrolled exothermic oxidation reactions. Reactions of this type are particularly hazardous when highly volatile hydrocarbons are present. Most current art practices minimize the risk of thermal runaway by limiting the processing temperature and quantity of exposed fiber.
In addition to the need to prevent an uncontrolled exothermic reaction and loss of carbon mass, the stabilization process must also preserve the structure of the fiber. Accordingly, the heating temperature must not exceed the fiber's softening point. Therefore, fibers prepared from soft, low melting pitches must be stabilized at lower temperatures than fibers prepared from hard, high melting pitches.
Clearly, when treating a large amount of fiber over a short period of time the current manufacturing methods have significant drawbacks.. The need to limit temperature, oxidant concentration and quantity of fiber in the stabilization process creates higher than desirable costs, diminishes the value and strength of the fiber and creates obvious operating risks. In overcoming the deficiencies of the current processes, a preferred method would utilize a low concentration of oxidizing agent coupled with high temperature heating while avoiding the risk of thermal runaway and loss of fiber size. Preferably, such a method would yield stabilized fibers in a short period of time and generate increased operating efficiencies.
To achieve these goals, the present invention provides a process for stabilizing pitch fibers using low concentrations of oxidizing agent at high temperature in a short period of time. This novel process stabilizes the core of the fiber without excessive surface oxidation. Additionally, the current invention provides a pitch fiber which becomes stabilized at its core at a rate which is sufficient to preclude excess loss of carbon at the fiber's surface due to oxidation. Further, the fibers take up a minimal amount of oxygen. These and other benefits of the present invention are described in greater detail below. For the purposes of this disclosure, the terms “stabilizing” and “thermosetting” are used interchangeably.
II. BRIEF DESCRIPTION OF THE INVENTION
The present invention provides a novel process for stabilizing pitch fibers. According to the disclosed process, the pitch fibers are heated at a temperature equal to or greater than the spinning temperature of the fibers. During the heating process, the fibers are exposed to an oxidizing agent for a period of time sufficient to stabilize, i.e. thermoset, the fibers.
Additionally, the present invention provides a process for stabilizing pitch fibers using continuous heating in the presence of a stream of gas. This process provides a means of significantly reducing the risk of uncontrolled exothermic reactions. According to this novel process, the pitch fibers are heated to a temperature at least equal to the spinning temperature of the fibers. During the heating process, the fibers are contacted with a flowing gas which contains an oxidizing agent. The flow rate of the gas is sufficient to remove excess heat from the fibers during the stabilization process thereby controlling the exotherm of the reaction. Exposure of the fibers to the oxidizing agent is maintained for a period of time sufficient to stabilize the fibers.
Further, the present invention provides a pitch fiber having a softening point of at least 300° C. The novel fiber has an oxygen diffusion rate to its center which is approximately equal to, or greater than, the oxidation rate at the fiber's surface. Thus, the fiber's center becomes oxidatively stabilized at a rate ranging from slightly less than, to greater than the rate of consumption of carbon by oxygen at the fiber's surface. In this manner, the current invention precludes excess loss of carbon at the surface of the fiber. Oxidative stabilization of the fiber may be carried out at temperatures equal to or greater than the fiber's spinning temperature in an atmosphere containing up to ten percent oxidizing agent by volume. Preferably, the concentration of oxidizing agent will be less than eight percent by volume. Finally, depending upon operating conditions and raw material used, these fibers may be oxidatively stabilized in less than ten minutes.
The current invention additionally provides a pitch fiber batt having a density of at least 900 g/m
2
which is capable of being oxidatively stabilized. Despite the high density of fibers, the novel pitch fiber batt oxidatively stabilizes without loss of fiber structure when heated in a flowing gas stream containing an oxidizing agent.
III. DETAILED DISCLOSURE OF THE INVENTION
The following discussion will focus on the stabilization of pitch fibers. However, the current invention is equally applicable to the stabilization of other artifacts prepared from pitch.
A. High Temperature Stabilization of Pitch Fibers
The stabilization of pitch fibers is a process which cross-links the large aromatic molecules of the pitch. Oxygen also reacts with pitch carbon to form gaseous carbon oxides in a process known as burnoff. If diffusion is relatively slow, oxidation at the surface (burnoff) dominates while the fiber's center remains unstabilized. If diffusion is relatively fast, oxygen penetrates and stabilizes (cross-links) the interior of the pitch artifact with little surface burnoff. According to the current invention, the oxygen diffusion rate into the pitch fiber to effect stabilization must be comparable to or faster than the rate at which oxygen reacts to consume carbon at the fiber's surface. Thus, the fibers may be stabilized at process temperatures of 300° C. and above.
Prior to the current invention, those skilled in the art believed that stabilization conditions of high temperature and low oxygen concentrations would produce excessive burnoff of the fiber's surface due to insufficient oxygen diffusion to the center of the fiber. Ultimately, the burnoff would weaken or destroy the fiber. As discussed above, increasing the concentration of oxygen at high tempera

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High temperature, low oxidation stabilization of pitch fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High temperature, low oxidation stabilization of pitch fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High temperature, low oxidation stabilization of pitch fibers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3142924

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.