High temperature heap bioleaching process

Specialized metallurgical processes – compositions for use therei – Processes – Free metal or alloy reductant contains magnesium

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

75743, 423 27, 423DIG17, E21B 4328, C22B 1500

Patent

active

061102539

ABSTRACT:
According to the process, a heap preferably having dimensions of at least 2.5 m high and 5 m wide is constructed with chalcopyrite bearing ore. The constructed heap includes exposed sulfide mineral particles at least 25 weight % of which are chalcopyrite. The concentration of the exposed sulfide mineral particles in the heap is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. Furthermore, at least 50% of the total copper in the heap is in the form of chalcopyrite. A substantial portion of the heap is then heated to a temperature of at least 50.degree. C. The heap is inoculated, with a culture including at least one strain of thermophilic microorganisms capable of bioleaching sulfide minerals at a temperature above 50.degree. C. A process leach solution that includes sulfuric acid and ferric iron is applied to the heap. Bioleaching is carried out so that sufficient sulfide mineral particles in the heap are biooxidized to oxidize at least 10 Kg of sulfide sulfur per tonne of solids in the heap and to cause the dissolution of at least 50% of the copper in the heap into the process leach solution in a period of 210 days or less from completion of the heap. A pregnant process leach solution that contains dissolved copper 1:3 collected from the heap as it drains from the heap. Copper may then be recovered from the pregnant process leach solution.

REFERENCES:
patent: 3785944 (1974-01-01), Atwood et al.
patent: 3856913 (1974-12-01), McElroy et al.
patent: 3949051 (1976-04-01), Pawlek
patent: 4173519 (1979-11-01), Parker et al.
patent: 4729788 (1988-03-01), Hutchins et al.
patent: 5196052 (1993-03-01), Gross et al.
patent: 5246486 (1993-09-01), Brierley et al.
patent: 5332559 (1994-07-01), Brierley et al.
patent: 5431717 (1995-07-01), Kohr
patent: 5573575 (1996-11-01), Kohr
patent: 5611839 (1997-03-01), Kohr
patent: 5676733 (1997-10-01), Kohr
patent: 5688304 (1997-11-01), Kohr et al.
patent: 5730776 (1998-03-01), Collins et al.
patent: 5763259 (1998-06-01), Panos
patent: 5766930 (1998-06-01), Kohr
patent: 5779762 (1998-07-01), Kohr et al.
patent: 5800593 (1998-09-01), Kohr
patent: 5873927 (1999-02-01), Schaffner et al.
Ahonen, L. and O.H. Tuovinen, Bacterial Leaching of Chalcopyrite-Containing Ores in the Presence of Silver and Graphite in Shake Flasks, in International Symposium of Biohydrometallurgy, 1989, Jackson Hole, Wyoming: Canadian Centre for Mineral and Energy Technology, pp. 25-34 no month.
Almendras, E, et al., Surface Transformation and Electrochemical Response of Chalcopyrite in the Bacterial Leaching Process., International Symposeum of Biohydrometallurgy, pp. 259-272 (Warwick United Kingdom: Science and Technology Letters, 1987) no month.
Ammou-Chokrourn, M., P. Sen, and F. Fouques, Electrooxidation of Chalcopyrite in Acid Chloride Medium; Kinetics, Stoichiometry and Reaction Mechanism,. in Thirteenth International Mineral Processing Congress, 1981, Warsaw, Poland: Elsevier Polish Scientific Publishers, pp. 759-809 no month.
Attia, Y.A. et al., Cleaning and Desulfurization of High-Sulfur Coal by Selective Flocculation and Bioleaching in a Draft Tube Fluidized Bed Reactor, Processing and Utilization of High Sulfur Coals IV, Elsevier Science Publishers, B.V., Amsterdam, 1991, pp. 769-790 no month.
Ballester, A., et al., The Use of Catalytic Ions in Bioleaching, Hydrometallurgy, 29 (1992), pp. 145-160 no month.
Bennett, J.W. et al., Limitations of Pyrite Oxidation Rates in Dumps Set by Air Transport Mechanisms, International Symposium of Biohydrometallurgy, pp. 551-561 (Warwick United Kingdom: Science and Technology Letters), no month 1989.
Berry, V.K., L.E. Murr, and J.B. Hiskey, Galvanic Interaction Between Chalcopyrite and Pyrite During Bacterial Leaching of Low-Grade Waste, Hydrometallurgy 3 (1978): pp. 309-326 no month.
Biegler, T. and M.D. Horne, The Electrochemistry of Surface Oxidation of Chalcopyrite, Journal of the Electrochemical Society: Electrochemical Science and Technology (1985), vol. 132, No. 6, pp. 1363-1369 Jun.
Boon, M. and J. Heijnen, Gas-Liquid Mass Transfer Phenomena in Bio-Oxidation Experiments of Sulphide Minerals: A critical review of literature data., Hydrometallurgy, 48 (1998): pp. 187-204 no month.
Boon, M. and J.J. Heijnen, Mechanisms and Rate Limiting Steps in Bioleaching of Sphalerite, Chalcopyrite and Pyrite with Thiobacillus ferrooxidans, Biohydrometallurgical Technologies, pp. 217-236 (Jackson Hole, Wyoming: The Minerals, Metals & Materials Society, 1993) no month.
Brierley, C., Leaching of Chalcopyrite Ore Using Sulfolobus Species, Developments in Industrial Microbiology Proceedings of the Thirty-Sixth General Meeting of the Society for Industrial Microbiology, Aug. 11-17, 1979, Pittsburgh, Pennsylvania (1980), pp. 435-444 no month.
Brierley, C. L., Thermophilic Microorganisms in Extraction of Metals From Ores, Develop. Indust. Microbiol., Chapter 19, pp. 273-284 (1977) no month.
Brierley, JA, and CL Brierley, Microbial Leaching of Copper at Ambient and Elevated Temperature in Metallurgical Applications for Bacteria Leaching and Related Microbiological Phenomena, pp. 477-490 (LE Murr, AE Torma and J.A. Brierley, ed., New York: Academic Press, 1978) no month.
Brierley, JA, and CL Brierley, Microbial Mining Using Thermophilic Microorganisms, in Thermophiles: General, Molecular, and Applied Microbiology, pp. 279-305, (Thomas D Brock, ed., Golden: John Wiley & Sons, 1986) no month.
Brock, T.D., et al., Sulfolobus: A New Genus of Sulfur-Oxidating Bacteria Living at Low pH and High Temperature, Arch. Mikrobiol., vol. 84: pp. 54-68 (1972) no month.
Brown, J.B., Jarosite-goethite stabilities at 25.degree.C 1 atm, Mineral. Deposita vol. 6, pp. 245-255 (1971) no month.
Canfell, A., P. Greenfield, and D. Winborne, Silver Catalysed Bioleaching of Chalcopyrite Ore in Columns, in IBS-Biomine '97, M 5.1.1-5.1.10 (Sydney, Australia: Australian Mineral Foundation (1997) no month.
Chakraborti, N., and LE Murr, Kinetics of Leaching Chalcopyrite-Bearing Waste Rock with Thermophilic and Mesophilic Bacteria, Hydrometallurgy, 5 (1980): 337-354 no month.
Devasia, P., K.A. Natarajan, and G.R. Rao, Role of Bacterial Growth Conditions and Adhesion in the Bioleaching of Chalcopyrite by Thiobacillus Ferrooxidans, Minerals and Metall. Processing, May 1996 at 82-86.
Duarte, J.C. et al., Semi-Conductor Reactor Studies of a High Temperature Copper Bioleaching Process, Proceedings of the 6.sup.th European Congress in Biotechnology, pp. 1177-1180 (1994) no month.
Dutrizac, J., The Dissolution of Chalcopyrite in Ferric Sulfate and Ferric Chloride Media, Met. Trans. B, vol. 12B, Jun. 1981, pp. 371-381.
Dutrizac, J., Elemental Sulfur Formation During the Ferric Chloride Leaching of Chalcopyrite, Hydrometallurgy, 23 (1990): 153-176 no month.
Dutrizac, J.E., The Leaching of Sulphide Minerals in Chloride Media, Hydrometallurgy, 29 (1992):1-45 no month.
Escobar, B., et al., Bioleaching of a Copper Concentrate with Sulfolobus BC., in Biohydrometallurgical Technologies, pp. 195-204 (Jackson Hole, Wyoming: The Minerals, Metals & Materials Society) (1993) no month.
Gomez, C., et al., Electrochemistry of Chalcopyrite, Hydrometallurgy, 43 (1996): 331-344 no month.
Harries, J.R. et al., Rate Controls on Leaching in Pyritic Mine Wastes, in Proceedings of International Symposium of Biohydrometallurgy, pp. 233-241 (Warwick United Kingdom: Science and Technology Letters) (1987) no month.
Huber, G. and K.O. Stetter, Sulfolobus Metallicus, sp. nov., a Novel Strictly Chemolithoautotrophic Thermophilic Archaeal Species of Metal-Mobilizers, System. Appl. Microbiol., vol. 14, pp. 372-378 (1991) no month.
Kelly, R., et al. Extremely Thermophilic Microorganisms: Metabolic Strategies, Genetic Characteristics, and Biotechnological Potential, in Biochemical Engineering V111, 1994, pp. 409-425 no month.
Le Roux, N E, and D S Wakerley. Leaching of Chalcopyrite (CuFeS2) at 70.degree.C Using Sulfolobus, in Proceedings of International Symposium of Biohydrometallurgy, pp. 305-318 (Warwick United Kingdom: Science and Technology Letters) (1987) no month.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High temperature heap bioleaching process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High temperature heap bioleaching process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High temperature heap bioleaching process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1245067

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.