High temperature bolting system

Tools – Wrench – screwdriver – or driver therefor – Machine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S452000, C411S014500, C411S916000

Reexamination Certificate

active

06199453

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a bolting system for maintaining a clamping force between bolted parts while operating at a temperature of 800° F. to 1200° F. and more particularly to a fastener construction providing a coefficient of thermal expansion similar to the coefficient of thermal expansion of the bolted parts for minimizing differential dimension changes due to temperature variations and providing a shank portion of the fastener with an elastic limit sufficiently great to maintain a clamping force between the bolted parts throughout a temperature range from ambient to the operating temperature.
2. Description of the Prior Art
The present invention is addressed to solving complex problems involving bolting systems required to operate at high temperatures for an extended operating time. Conventional bolting systems used to form high temperature joints, used particularly in steam turbines and similar joints, have the acute disadvantage that they become considerably weaker when the operating temperature increases. It is necessary in such a bolting system that components are designed to clamp the joint firmly without damaging the most expensive part, the main turbine casting. In some cases the clamped part may be an expensive valve body or any other component. While the present invention is not so limited, a bolting system for a main steam turbine casing has been chosen for the purpose of disclosing the present invention.
At elevated temperatures of the order of 800° F. to 1200° F., bolting parts, typically studs tensioned in a threaded tapped hole, often fail because of an improper selection of stud material. The studs soften, stretch and become loose. Other problems occur because the stud is subjected to differential expansion causing the clamped part to become loose when the stud expands faster than the clamped part and similarly the stud becomes over stressed when stud expansion is slower than the clamped part. In the latter circumstance conventional studs stretch permanently under the clamping force because the force is too great.
By way of a detailed example of such bolting problems, is the bolting of the split casing of a steam turbine. The casing in the area around the steam inlet reaches a temperature typically of 1000° F. to 1050° F. The turbine casing is usually heavy with wall thickness ranging from two to eight inches thick formed by casting a chrome molybdenum vanadium steel. This cast steel is relatively strong at 1000° F. compared to other low cost casting materials. Relatively strong means it will soften at 1000° F. to less than 10,000 psi creep strength while other low cost castings soften to 2,000-5,000 psi creep strength at 1000° F. Most casting materials start at about 40,000 psi to 60,000 psi yield strength when cold. Steam turbines have to withstand not only high temperatures, but also high pressures. The high temperatures, high pressures and relatively soft materials demand that the castings are made with very thick walls. The larger the turbine the thicker the wall.
Since a turbine housing is split along its axis, the two halves have to be bolted together. On large turbines the bolts may be as large as 6 inches in diameter. On small turbines the bolts may be 2 inches in diameter. In many cases the bolts are made from a material similar to the material of the housing, which in turn allows both, bolt as well as housing, to expand at the same rate as the temperature rises. This has been the practice for many years when the chrome molybdenum vanadium steel casting was bolted together with chrome molybdenum vanadium steel bolts. By design the combined cross section of the chrome molybdenum vanadium steel bolts is smaller than the cross section of the cast housing. After a certain time the bolts relax to a point where they do not clamp the two castings sufficiently causing the turbine to leak steam. Turbine designers try to estimate the time it takes for the bolts to relax sufficiently to cause leaks. A five year period was usually considered the time span before leaks occurred and corresponds to scheduled turbine overhaul. However, the estimated time period was not always accurate. Presently, operators prefer to extend the time between overhauls and also raise the operating temperature by up to 50° F. to improve efficiency.
To solve the above problems turbine designers and operators attempted to improve performance by using substitute bolting materials. Some improved performance was obtained by the addition of trace elements such as boron to the basic chrome molybdenum vanadium steel, but the improvements obtained were not sufficient. Many substitute materials were strong enough to operate at the required high temperatures but the expansion coefficient of the bolting material did not match that of the steel casting material. Many heat resistant stainless steels expand at a rapid rate causing a reduction and in extreme circumstances an actual loss of the clamping force provided by the tightening process when reaching the operating temperature of the turbine. The following example demonstrates the problem encountered due to differential expansion at high temperature between bolting material and the turbine casting:
Example:
Coefficient of thermal expansion
7.9 × 10
−6
Inch/° F./Inch
(turbine housing)
Thickness of housing flange
10 inches
Operating temperature -
1000 − 70 = 930° F.
Room temperature
Expansion of flange:
7.9 × 10
−6
× 10 × 930 = 0.073 inches
Coefficient of expansion (high
9.8 × 10
−6
Inch/° F./Inch
temp. bolt A286)
Expansion of bolt
9.8 × 10
−6
× 10 × 930 = 0.091 inches
Difference in expansion
0.091 − 0.073 = 0.018 inches
This example demonstrates that the expansion of the bolt exceeds the expansion of the flange by 0.018 inches. Tensioning the bolt to create a preload will not resolve the problem. Expansion of the bolt, because of the preload, at room temperature produces an elongation according to Hook's Law:
bolt length
10 inches
bolt stress
45,000 psi
modulus of elasticity
30 × 10
6
psi
expansion of bolt
&Dgr;1 = 10 × 45,000/30 × 10
6
= 0.015 inches
The bolt was stretched 0.015 inches by the tension causing the preload but the bolt expanded 0.018 inches due to thermal expansion from 70° F. to 1000° F. Thus the bolt is now loose by 0.003 inches which is obviously not a workable solution.
Another bolting material was found to be unsuitable and that is a martensitic stainless steel of the 400 series. The addition of vanadium to the basic alloy creates an alloy with about twice the strength at high temperatures as compared with the chrome molybdenum vanadium bolting material. The improved 400 series stainless steel has AISI designation of 422 and is known in the industry as “12% chrome steel”. This chrome steel used as a bolting material in Example 1, having a thermal expansion coefficient of 6.4×10
−6
, results in the expansion of the 10 inches bolt by 6.4×10
−6
×10×930=0.059 inches. The expansion of the flanges of the housing is 0.073 inches and therefore the bolt must stretch 0.014 inches in excess of the 0.015 inches resulting from the tightening procedure. The total stretch is now 0.015 inches+0.014 inches=0.029 inches. Using Hook's law the tension in the bolt would now be:
0.029×30×10
6
/10=87,000 psi
The stress increased by a factor of about 2. In reality Hook's law does not apply when materials are stressed above their elastic limits. The 12% chrome material is much too soft at 1000° F. to sustain the 87,000 psi stress. Under these operating conditions the 12% bolting material can sustain only about 18,000 psi of stress over long periods (10,000 hours or more). When over-stressed, the bolt will stretch permanently and therefore loose the tension producing the preload. Another problem arises when the joint of the housing cools down. The castin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High temperature bolting system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High temperature bolting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High temperature bolting system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453952

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.