Alloys or metallic compositions – Magnesium base
Reexamination Certificate
2000-07-05
2002-12-10
Wyszomierski, George (Department: 1742)
Alloys or metallic compositions
Magnesium base
C420S407000, C420S900000
Reexamination Certificate
active
06491866
ABSTRACT:
FIELD OF THE INVENTION
The instant invention relates generally to revolutionary new hydrogen storage alloys that are able, for the first time to realistically use the most ubiquitous, ultimate source of fuel, hydrogen. More specifically the instant invention relates to hydrogen storage alloys that not only are capable of storing on the order of 7 weight % hydrogen, but are capable of storing at least 80% of their maximum capacity within 10 minutes are and have a cycle life of at least 500 cycles without loss of capacity or kinetics.
BACKGROUND OF THE INVENTION
The instant patent application for describes hydrogen storage alloys, useful for a hydrogen-based economy, which have high storage capacity, excellent kinetics and long cycle life. An infrastructure system for such a hydrogen based economy, is the subject of copending U.S. application Ser. No. 09/444,810, entitled “A Hydrogen-based Ecosystem” filed on Nov. 22, 1999 (the '810 application), which is hereby incorporated by reference. This infrastructure, in turn, is made possible by alloys such as the instant hydrogen storage alloy that have surmounted the chemical, physical, electronic and catalytic barriers that have heretofore been considered insoluble. Other hydrogen storage alloys which are useful in such an infrastructure are fully described in copending U.S. patent application Ser. No. 09/435,497, entitled “High Storage Capacity Alloys Enabling a Hydrogen-based Ecosystem”, filed on Nov. 6, 1999 (“the '497 application”), which is hereby incorporated by reference. The '497 application relates to alloys which solve the unanswered problem of having sufficient hydrogen storage capacity with exceptionally fast kinetics to permit the safe and efficient storage of hydrogen to provide fuel for a hydrogen based economy, such as powering internal combustion engine and fuel cell vehicles. In the '497 application the inventors for the first time disclosed the production of Mg-based alloys having both hydrogen storage capacities higher than about6 wt. % and extraordinary kinetics. This revolutionary breakthrough was made possible by considering the materials as a system and thereby utilizing chemical modifiers and the principles of disorder and local order, pioneered by Stanford R. Ovshinsky, in such a way as to provide the necessary catalytic local environments, and at the same time designing bulk characteristics for storage and high rate charge/discharge cycling. In other words, these principles allowed for tailoring of the material by controlling the particle and grain size, topology, surface states, catalytic activity, microstructure, and total interactive environments for extraordinary storage capacity.
The combination of the '810 and the '497 applications solves the twin basic barriers which have held back the ubiquitous use of hydrogen: 1) storage capacity; and 2) infrastructure. With the use of the alloys of the '497 application, hydrogen can be shipped safely by boats, barges, trains, trucks, etc. when in solid form. However, the hydrogen infrastructure described in the '810 application requires careful thermal management and efficient heat utilization throughout the entire system. The instant invention makes the necessary heat transfer between the subsystems of the infrastructure simple, efficient, and economic.
As the world's population expands and its economy increases, the atmospheric concentrations of carbon dioxide are warming the earth causing climate change. However, the global energy system is moving steadily away from the carbon-rich fuels whose combustion produces the harmful gas. For nearly a century and a half, fuels with high amounts of carbon have progressively been replaced by those containing less.
In the United States, it is estimated, that the trend toward lower-carbon fuels combined with greater energy efficiency has, since 1950, reduced by about half the amount of carbon spewed out for each unit of economic production. Thus, the decarbonization of the energy system is the single most important fact to emerge from the last 20 years of analysis of the system. It had been predicted that this evolution will produce a carbon-free energy system by the end of the 21
st
century. The instant invention helps to greatly shorten that period. In the near term, hydrogen will be used in fuel cells for cars, trucks and industrial plants, just as it already provides power for orbiting spacecraft. But ultimately, hydrogen will also provide a general carbon-free fuel to cover all fuel needs.
FIG. 1
, taken from reliable industrial sources, is a graph demonstrating society's move toward a carbon-free environment as a function of time starting with the use of wood in the early 1800s and ending in about 2010 with the beginning of a “hydrogen” economy. In the 1800s, fuel was primarily wood in which the ratio of hydrogen to carbon was about 0.1. As society switched to the use of coal and oil, the ratio of hydrogen to carbon increased first to 1.3 and then to 2. Currently, society is inching closer to the use of methane in which the hydrogen to carbon ratio is further increased to 4 (methane has serious problems with safety, cost and infrastructure). However, the ultimate goal for society is to employ a carbon-free fuel, i.e., the most ubiquitous of elements, pure hydrogen. The obstacle has been the lack of solid state storage capacity and infrastructure. The inventors of the '497 and the '810 applications have made this possible by inventing a 7% storage material (7% is an umoptimized fugure and will be increased along with better kinetics) with exceptional absorption/desorption kinetics, i.e. at least 80% charge in less than 2 minutes and an infrastructure to use these storage alloys. These alloys allow for the first time, a safe, high capacity means of storing, transporting and delivering pure hydrogen.
Hydrogen is the “ultimate fuel.” It is inexhaustible. Hydrogen is the most plentiful element in the universe (over 95% of all matter). Hydrogen can provide a clean source of energy for our planet and can be produced by various processes which split water into hydrogen and oxygen. The hydrogen can then be stored and transported in solid state form.
While the world's oil reserves are depletable, the supply of hydrogen remains virtually unlimited. Hydrogen, which can be produced from coal, natural gas and other hydrocarbons, is preferably formed via electrolysis of water, more preferably using energy from the sun (see U.S. Pat. No. 4,678,679, the disclosure of which is incorporated herein by reference.) However, hydrogen can also be produced by the electrolysis of water using any other form of economical energy (e.g., wind, waves, geothermal, hydroelectric, nuclear, etc.) Furthermore, hydrogen, is an inherently low cost fuel. Hydrogen has the highest density of energy per unit weight of any chemical fuel and is essentially non-polluting since the main by-product of “burning” hydrogen is water. Thus, hydrogen can be a means of solving many of the world's energy related problems, such as climate change, pollution, strategic dependancy on oil, etc., as well as providing a means of helping developing nations.
While hydrogen has wide potential application as a fuel, a major drawback in its utilization, especially in mobile uses such as the powering of vehicles, has been the lack of an acceptable lightweight hydrogen storage medium. Storage of hydrogen as a compressed gas involves the use of large and heavy vessels. Additionally, large and very expensive compressors are required to store hydrogen as a compressed gas and compressed hydrogen gas is a very great explosion/fire hazzard.
Hydrogen also can be stored as a liquid. Storage as a liquid, however, presents a serious safety problem when used as a fuel for motor vehicles since hydrogen is extremely flammable. Liquid hydrogen also must be kept extremely cold, below −253° C., and is highly volatile if spilled. Moreover, liquid hydrogen is expensive to produce and the energy necessary for the liquefaction
Ovshinsky Stanford R.
Young Rosa T.
Combs Morillo Janelle
Energy Conversion Devices Inc.
Schumaker David W.
Siskind Marvin S.
Wyszomierski George
LandOfFree
High storage capacity, fast kinetics, long cycle-life,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High storage capacity, fast kinetics, long cycle-life,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High storage capacity, fast kinetics, long cycle-life,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2925855