High-speed transplanter for seedlings attached to tape

Planting – Plant setting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C111S903000, C111S114000

Reexamination Certificate

active

06305303

ABSTRACT:

This invention pertains to a machine for planting seedlings attached to a tape, particularly to one that plants the entire tape with attached seedlings at speeds up to 7.5 mph while maintaining a low tensile force on the tape.
Many crops, for example, tobacco and sweet potatoes, are best grown by growing seeds in a controlled environment and then transplanting seedlings to the field. Transplanting methods have dramatically improved in recent years, but are still labor intensive. The feeding of the seedlings into a transplanting machine resisted mechanization for a long time due to the lack of uniformity in size and shape of seedlings and problems in spacing the seedlings. See C. W. Suggs et al., “Self-Feeding Transplanter for Tobacco and Vegetable Crops,” Applied Engineering in Agriculture, vol.3, pp. 148-152 (1987). The spacing of the planted seedlings often determines the yield of the crop. Even today, many transplanting methods rely on human labor to place seedlings directly into a planting mechanism and to determine the correct spacing.
The automatic feeding of seedlings to the transplanting machine has taken two tracks. One method is to grow the seedlings in containers and then to plant the individual containers with the seedlings, or to extract the seedlings from the containers before planting. See Suggs et al., 1987; U.S. Pat. Nos. 5,765,491; 4,886,002; 4,869,637; 4,289,080; 4,167,911; 4,132,337; 3,906,875; and 3,719,158. U.S. Pat. No. 4,455,950 describes a machine to plant seedlings that are initially attached to a wound tape, and that removes each seedling from the tape before planting.
A second method to automate feeding of the seedlings has been to load bare-root seedlings on a tape wound around a spool device for transplanting later. This method has several advantages over the individual container methods. Bare-root seedlings are usually cheaper to produce than plants grown in individual containers. Moreover, herbicides and fertilizers can be applied to a tape that is planted with the seedlings. Various methods have been developed for attaching the seedlings to a tape and winding the tape onto a spool. See, e.g., B. W. Maw et al., “A Seedling Taping Machine for Bare Root Plants,” 1984-Transactions of the American Society of Agricultural Engineers, pp. 711-714 (1984); and U.S. Pat. No. 1,750,054.
Once the seedlings are loaded on a spool, the seedlings may be planted mechanically. One type of bare-root transplanter cuts the tape between plants before planting the seedlings. The complicated machine controls a power drive to uncoil the tape by micro sensors that sense when a plant has passed the cutters and stops the tape movement. The tape cutters move into position and cut the tape, and the seedling with a segment of tape is planted. The retraction of the cutters re-starts the uncoiling of the tape. The spacing of the planted seedlings is determined by the speed of cutting. However, this method was found to be only 70% efficient in properly spacing the plants and relatively slow. See Suggs et al., 1987.
U.S. Pat. No. 4,829,915 describes a machine to plant an intact tape loaded with seedlings by pulling the tape from a freely rotating turntable. The pulling force comes from tape already anchored in the ground. In this machine, the tape reverses direction before being planted, and has an elastic component to handle the additional tensile stress created from being pulled and from reversing direction.
U.S. Pat. No. 1,750,054 describes a machine to hold a vertical spool with seedlings loaded onto a tape. The tape is turned 90° before planting to change the orientation from horizontal to vertical and is then pulled into the furrow by an initial stake or other holding device for the tape.
Several machines have been developed to plant seed tapes loaded on a spool. See U.S. Pat. Nos. 4,092,936; 3,817,042; 3,408,823; and 3,078,681. All of these machines rely on a freely rotating turntable and pull the tape from the spool by tension from tape previously planted in the ground or anchored in some way.
U.S. Pat. No. 2,924,186 describes a hand-held seed planter that uses a guide wheel to drive the rotation of a metering roll and tape to prevent accumulation of slack at various planting speeds.
U.S. Pat. No. 5,165,351 describes an alternative embodiment that may have a drive train powered by the packing wheels that connects to the seed tape dispenser.
However, planting a seed tape presents different problems from those of planting a tape with seedlings. For example, a seed tape may be planted horizontally in the furrow, while seedlings must be planted vertically. Additionally, seedlings are more delicate, extend outside the bounds of the tape, and require more protection than do seeds.
There exists a need for a high-speed transplanter for seedlings loaded onto a tape that is relatively simple to operate with low labor costs. Preferably, the tape should be biodegradable. Previous designs that depend on pulling a tape already anchored in the ground require tape that can withstand significant tensile stress, especially at high speeds of planting. Biodegradable tapes tend to have low tensile strength. Thus, a need exists for a high-speed transplanter designed to exert low tensile stress on the tape.
Sweet potatoes are the sixth largest food crop in the world. Every part of the plant is edible, including the leaves, vine, stem, and roots. One of the reasons that sweet potatoes are not more widely grown is because the planting and harvesting process is very labor intensive. Whole sweet potatoes are planted in beds until the seedlings grow to a height of eight to twelve inches. The seedlings are then clipped one inch above ground level and are transplanted into another field. The current transplanting method is very labor intensive. Typically, a tractor pulls one to eight, one-row transplanters. Each transplanter requires two workers who ride on the transplanter and drop the individual plants into the planting mechanism. Thus an eight-row transplanter requires seventeen people, including the driver. The maximum speed for the tractor and transplanter is about 0.75 mph.
There exists a need for an automated planting system for sweet potatoes that is faster, less labor intensive, and less expensive. The time window for planting to produce optimum yield is only about 20 days long. The current transplanting speed of 0.75 mph, coupled with either wet or very dry weather conditions often cause farmers not to meet this time window. Additionally, the current planting method is labor-intensive.
More importantly, slippage and operator error in the current transplanting method often cause unevenly spaced plants, which reduces the yield. The spacing to achieve maximum yield depends on the soil conditions and the size of the potatoes desired at harvest. In south Louisiana, the desired spacing for sweet potato seedlings is about 12 inches.
We have discovered an automated transplanter suitable for use with seedlings previously loaded and correctly spaced on a low tensile-strength, biodegradable tape wound on a spool. The design allows rapid planting of the tape with the attached seedlings while minimizing the tension placed on the tape. The unspooling of the tape is linked directly to the ground speed of the tractor, with an anti-backlash mechanism to prevent the spool from “free-wheeling” when the tractor slows quickly. We have successfully planted synthetic seedlings attached to a biodegradable tape at speeds up to 7.5 mph.


REFERENCES:
patent: 1750054 (1930-03-01), Rosso
patent: 2924186 (1960-02-01), Landeen
patent: 3078681 (1963-02-01), Zitko
patent: 3408823 (1968-11-01), Okita et al.
patent: 3719158 (1973-03-01), Roths
patent: 3817042 (1974-06-01), Sanderson
patent: 3906875 (1975-09-01), Kesinger et al.
patent: 4092936 (1978-06-01), Griffin et al.
patent: 4132337 (1979-01-01), Masuda et al.
patent: 4167910 (1979-09-01), Pretzer
patent: 4167911 (1979-09-01), Masuda et al.
patent: 4248014 (1981-02-01), Williams
patent: 4289080 (1981-09-01), Penley
patent: 4455950 (1984-06-01), Pretzer
patent: 4829915

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High-speed transplanter for seedlings attached to tape does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High-speed transplanter for seedlings attached to tape, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-speed transplanter for seedlings attached to tape will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2611664

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.