Photocopying – Contact printing – Light monitoring exposure control
Reexamination Certificate
1999-05-06
2001-06-26
Adams, Russell (Department: 2851)
Photocopying
Contact printing
Light monitoring exposure control
C355S071000
Reexamination Certificate
active
06252652
ABSTRACT:
BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates generally to a printer for selectively projecting photographic images onto a projection plane containing photographic paper. More particularly, the present invention relates to a high speed photographic package printer for producing a plurality of different sets or packages of photographs based on one or more negatives, wherein the improved package printer boasts an automatic paper-loading feature, dynamically controlled paper-slack loops, off-center printing, a rotational prism for creating 10″×13″ photographs, a 13-UP lens assembly including 12 wallet lenses and a single 5″×7″ retro-focus lens, an automatic diffusion plate cleaner, an improved dichroic lamp filtering arrangement, a focal plane shutter, bi-directional film movement, an improved film cleaner, and improved masking.
II. Discussion of the Prior Art
Photographic package printers have experienced proliferated use and widespread popularity due to their ability to generate custom made photographic packages consisting of selected photographs of varying size, shape, and style based on one or more negatives. Photographic package printers accomplish this by providing a lamphouse from which a beam of light is directed through photographic film onto a projection plane containing photographic paper for producing a print. In order to vary the shape and size of the particular prints, package printers are equipped with a plurality of movable lenses having varying magnification ratios so as to create a wide variety of exposures upon the photographic paper. By way of example and not limitation, package printers are commonly employed for processing the exposed photographic film from annual school photography sessions wherein each student within the school or class is photographed in any number of different poses using one or a plurality of different backdrops. The student may thereafter choose from among the various proofs generated during the photography session to order a custom package containing any number of different size or style photographs, such as wallet-size, 5″×7,″8″×10,″ and 10″×13″ photographs. However, the package printers of the prior art suffer from several substantial drawbacks both in terms of the speed of operation and print quality.
With specific regard to the speed of operation, the prior art package printers have several time limiting features which collectively restrict the ability of the package printers to operate at high speeds. One such drawback is that the prior art package printers typically require considerable time and energy to load the paper into the paper deck for subsequent exposure. Although several attempts have been made to automate the paper loading process, these efforts fail to provide a reliable means for guiding the paper during the loading stage such that significant system down time may be experienced to rectify the situation and reload the paper. For example, U.S. Pat. No. 5,181,066 to Ozawa et al. discloses a paper transporting device for a photographic printer which utilizes retractable bridge members to support the paper during the loading stage, a first pair of drive rollers for drawing the paper into the printer, and a second pair of drive rollers for propelling the paper to a processing section of the printer. U.S. Pat. No. 5,107,296 to Ozawa et al. discloses the use of retractable bridge members for controlling the transportation of the paper between a paper supply cartridge and a processing section. U.S. Pat. No. 4,961,093 also employs retractable bridge members so as to facilitate the loading of paper from a paper supply magazine into exposure apparatus and further to a take-up magazine. U.S. Pat. No. 4,655,583 to Kitai entails maintaining the traveling path of the photographic paper from a supply cartridge to nipping rollers in a straight manner by adjusting the height of an inner frame via elevator means. U.S. Pat. No. 4,566,784 to Nitsch discloses an apparatus for threading a new roll of paper into a photographic copier, comprising a retractable flap which, when disposed in the operative (guiding) position parallel to the paper, forms a passageway for threading the new roll of paper into the photographic copier. However, although the improvements offered in these references provide benefits over manual paper loading, their teachings are nonetheless flawed in that they merely provide guidance along a single surface of the paper, thereby allowing the paper to buckle and become fouled up during the loading process.
Another time limiting feature of the prior art package printers relates to the paper slack loops associated with the drive motors used to load and advance the photographic paper. Paper slack loops are essentially reservoirs containing a length of photographic paper which allows the paper to be advanced quickly into and out of an exposure area within the paper deck by factoring out the inertia of the paper supply spool. U.S. Pat. No. 5,181,066 to Ozawa et al. discloses a pair of loop sensors associated with each paper slack loop for detecting when the particular loop has exceeded a predetermined threshold. U.S. Pat. No. 5,107,296 to Ozawa et al. discloses a loop sensor for detecting a predetermined length of a first loop. U.S. Pat. No. 4,961,093 to Hicks also discloses the use of a pair of sensors for detecting when each particular paper slack loop exceeds a predetermined length. U.S. Pat. No. 5,159,385 to Imamura discloses a photolab system having a plurality of loop sensors for controlling the length of the paper within the respective paper loop reservoirs. The paper slack loop sensing arrangements within the above-identified references, however, are flawed in that they are not capable of detecting the actual length of the paper within each respective paper loop reservoirs but rather are merely capable of determining whether the particular paper loops have exceeded a predetermined limit or range. This is disadvantageous in terms of responsiveness in that a lag time exists between the instance that the sensors detect that the paper has exceeded the predetermined threshold and the time that the drive motors are activated to advance the paper, thereby limiting the overall speed at which the package printer can operate.
Another drawback stems from the manner in which 10″×13″ photographs are generated in prior art package printers. The traditional method for generating 10″×13″ photographs in package printers is illustrated in U.S. Pat. No. 5,162,843 to Clapp, wherein the photographic negative is physically rotated within the film deck in order to project a 10″×13″ image on the 10″ wide paper. Although effective at producing the 10″×13″ photographs, this technique is particularly disadvantageous in that the mechanical turrets employed to rotate the negative are extremely bulky and heavy. The attendant bulk of the mechanical turret consumes a substantial amount of valuable space within the package printer, while the exorbitant weight limits the speed at which the negative can be rotated and causes substantial vibrations within the package printer which require lengthy settling time. The settling time and rotation time are additive such that the overall amount of time required to generate a 10″×13″ photograph is quite lengthy. Moreover, the mechanical turret can only support a limited amount of photographic film such that the film must be reloaded quite often. This increases the overall down time for the printer which, it will be appreciated, restricts the speed and throughput of these package printers. The mechanical turrets are also flawed in that the bearings are prone to wear out and become damaged through repeated rotation which, once again, leads to increased system down time for repair.
Another significant flaw in the prior art package printers is that they print on-center, that is, the negative is
Adolphi E. John
Breckenridge Michael
Galloway Patrick J.
Jensen Gerald A.
Kuester Todd
Adams Russell
Lifetouch Portrait Studios Inc.
Nguyen Hung Henry
Nikolai Mersereau & Dietz, P.A.
LandOfFree
High speed package printer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High speed package printer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High speed package printer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2531728