Electrical connectors – Electromagnetic or electrostatic shield – Multi-part shield body
Reexamination Certificate
1999-08-26
2001-10-09
Vu, Hien (Department: 2833)
Electrical connectors
Electromagnetic or electrostatic shield
Multi-part shield body
C439S607560
Reexamination Certificate
active
06299483
ABSTRACT:
This invention relates generally to electrical connectors used to interconnect printed circuit boards and more specifically to a method of simplifying the manufacture of such connectors.
Electrical connectors are used in many electronic systems. It is generally easier and more cost effective to manufacture a system on several printed circuit boards which are then joined together with electrical connectors. A traditional arrangement for joining several printed circuit boards is to have one printed circuit board serve as a backplane. Other printed circuit boards, called daughter boards, are connected through the backplane.
A traditional backplane is a printed circuit board with many connectors. Conducting traces in the printed circuit board connect to signal pins in the connectors so that signals may be routed between the connectors. Other printed circuit boards, called “daughter boards” also contain connectors that are plugged into the connectors on the backplane. In this way, signals are routed among the daughter boards through the backplane. The daughter cards often plug into the backplane at a right angle. The connectors used for these applications contain a right angle bend and are often called “right angle connectors.”
Connectors are also used in other configurations for interconnecting printed circuit boards, and even for connecting cables to printed circuit boards. Sometimes, one or more small printed circuit boards are connected to another larger printed circuit board. The larger printed circuit board is called a “mother board” and the printed circuit boards plugged into it are called daughter boards. Also, boards of the same size are sometimes aligned in parallel. Connectors used in these applications are sometimes called “stacking connectors” or “mezzanine connectors.”
Regardless of the exact application, electrical connector designs have generally needed to mirror trends in the electronics industry. Electronic systems generally have gotten smaller and faster. They also handle much more data than systems built just a few years ago. To meet the changing needs of these electronic systems, some electrical connectors include shield members. Depending on their configuration, the shields might control impedance or reduce cross talk so that the signal contacts can be placed closer together.
An early use of shielding is shown in Japanese patent disclosure 49-6543 by Fujitsu, Ltd. dated Feb. 15, 1974. U.S. Pat. Nos. 4,632,476 and 4,806,107—both assigned to AT&T Bell Laboratories—show connector designs in which shields are used between columns of signal contacts. These patents describe connectors in which the shields run parallel to the signal contacts through both the daughter board and the backplane connectors. Cantilevered beams are used to make electrical contact between the shield and the backplane connectors. U.S. Pat. Nos. 5,433,617; 5,429,521; 5,429,520 and 5,433,618—all assigned to Framatome Connectors International—show a similar arrangement. The electrical connection between the backplane and shield is, however, made with a spring type contact.
Other connectors have the shield plate within only the daughter card connector. Examples of such connector designs can be found in U.S. Pat. Nos. 4,846,727; 4,975,084; 5,496,183; 5,066,236—all assigned to AMP, Inc. An other connector with shields only within the daughter board connector is shown in U.S. Pat. No. 5,484,310, assigned to Teradyne, Inc.
Another modification made to connectors to accomodate changing requirements is that connectors must be much larger. In general, increasing the size of a connector means that manufacturing tolerances must be much tighter. The permissible mismatch between the pins in one half of the connector and the receptacles in the other is constant, regardless of the size of the connector. However, this constant mismatch, or tolerance, becomes a decreasing percentage of the connector's overall length as the connector gets larger. Therefore, manufacturing tolerances must be tighter for larger connectors, which can increase manufacturing costs. One way to avoid this problem is to use modular connectors. Teradyne Connection Systems of Nashua, N.H., USA pioneered a modular connector system called HD+®, with the modules organized on a stiffener. Each module had multiple columns of signal contacts, such as 15 or 20 columns. The modules were held together on a metal stiffener.
An other modular connector system is shown in U.S. Pat. Nos. 5,066,236 and 5,496,183. Those patents describe “module terminals” with a single column of signal contacts. The module terminals are held in place in a plastic housing module. The plastic housing modules are held together with a one-piece metal shield member. Shields could be placed between the module terminals as well.
It would be highly desirable if a modular connector could be made with an improved shielding configuration. It would also be desirable if the manufacturing operation were simplified. It would be further desirable if a design could be developed that allowed easy intermixing of single ended and differential signal contacts.
SUMMARY OF THE INVENTION
With the foregoing background in mind, it is an object of the invention to provide a high speed, high density connector.
It is a further object to provide a modular connector that is easy to manufacture.
It is a further object to provide a low insertion force connector.
It is also an object to provide a connector that can be easily assmebled to include signal contacts configured for single end or differential signals.
The foregoing and other objects are achieved in an electrical connector manufactured from a plurality of wafers. Each wafer is made with a ground plane insert molded into a housing. The housing has cavities into which signal contacts are inserted.
In a preferred embodiment, the signal contacts are also insert molded into a second housing piece. The two housing pieces snap together to form one wafer. The wafers are held together on a metal stiffener.
REFERENCES:
patent: 4768961 (1988-09-01), Lau
patent: 4976628 (1990-12-01), Fedder
patent: 5496183 (1996-03-01), Soes et al.
patent: 5664968 (1997-09-01), Mickievicz
Cohen Thomas S.
McNamara David M.
Stokoe Philip T.
Teradyne, Inc.
Vu Hien
LandOfFree
High speed high density electrical connector does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High speed high density electrical connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High speed high density electrical connector will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2615001