High speed card edge connectors

Electrical connectors – Electromagnetic or electrostatic shield – Multi-part shield body

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S637000, C439S108000, C439S060000, C439S607070

Reexamination Certificate

active

06561850

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to modular electrical connectors and, more particularly, to card edge connectors with shielded modular inserts.
2. Discussion of Earlier Developments
There is a plethora today of known constructions of multiple contact electrical connectors providing a variety of features including some form of modular construction and signal shielding. A few of the more pertinent patented constructions known to the applicants will now be briefly described.
U.S. Pat. Nos. 4,067,637 to Narozny, No. 4,324,451 to Ammon et al. and 4,530,561 to Tyree et al. are generally descriptive of currently used card edge connectors.
U.S. Pat. No. 4,550,959 to Grabbe et al. discloses an expandable, modular card edge connector in which individual elements are unified into a longitudinal whole by melting an interfacing material between adjoining sections. Withdrawal of the heat source results in a generally rigid assembly.
U.S. Pat. No. 4,586,254 to Ammon et al. discloses a modular printed circuit card edge connector in which two end bodies engage opposite ends of a single insulator body which contains the entire population of contacts. It is intended to be manufactured in a generally long bar, or by a continuous molding process, to provide for cutting to length a single, unitary housing component containing the desired number of contact arrays.
U.S. Pat. No. 5,013,263 to Gordon et al. and U.S. Pat. No. 5,584,728, both disclose an electrical connector built up of interlocking modules. Specifically, the connector structures have conversely shaped interlocking parts at their ends to interlock end-to-end with similar structures to form a substantially self-supporting structure that can have any desired number of contacts, each spaced an integral multiple of the same unit distance from all of the contacts on all of the modules.
U.S. Pat. No. 5,104,341 to Gilissen et al. discloses an electrical connector mountable to a printed circuit board which includes a plurality of insulated housings. The housings accept a plurality of terminal subassemblies into which a plurality of electrical terminals are integrally molded. Shield members are insertable into the rear of the connector housing to shield adjacent vertical rows of terminals from cross talk.
U.S. Pat. No. 5,704,793 to Stokoe et al. discloses an electrical connector which is scalable in its engagement widths, but not by means of combinations of contact modules. The scalable components of this invention are contained within a longitudinal latching and clamping mechanism. This invention uses a single and discrete membrane such as a flex circuit, which must be clamped on to the card edge pattern by the latching and clamping mechanism.
U.S. Pat. No. 5,716,237 to Conorich et al. discloses an electrical connector which compensates from near-end cross talk at its mating section with near-end cross talk of an opposite polarity and essentially equal magnitude. Conductive plates connected to the conductors of the connector provide capacitive coupling unbalance between the adjacent pairs of conductors to produce the necessary opposite polarity, equal magnitude, near-end cross talk.
SUMMARY OF THE INVENTION
The present invention relates, generally, to a card edge connector which includes an elongated longitudinally extending outer frame defining a reception region. The electrical connector is adapted to receive a plurality of chiclet modules including contact members lying in parallel laterally extending planes which, as an assembly, are positioned to connectively engage with mating contacts. Each chiclet module includes an insulative housing having first and second spaced generally parallel elongated passages therein and a card receiving recess for reception therein between the first and second passages of a planar card having opposed surfaces with conductive contact members thereon. First and second elongated contacts are firmly received, respectively, in the first and second passages. Each has a first contact surface positioned, respectively, for engagement with first and second of the mating contacts. The card receiving recesses of the chiclet modules as a group define a longitudinally extending card receiving slot. The elongated contacts each include a second contact surface projecting into the card receiving slot for engagement, respectively, with second conductive contact members on the planar card. A tubular ground shield may be slidably received on the insulative housing in proximate engagement with its outer peripheral surface. In this instance, the ground shield includes a first integral ground contact for engagement with a ground contact of an external unit associated with the mating contacts engaged by the first contact surfaces of the first and second elongated contacts and a second integral ground contact for engagement with a ground contact surface on the planar card inserted into the card receiving slot.
A chiclet module may be described as a pre-assembled module which includes one or more contacts, an insulator, and one or more shields. The pre-assembly of identical modules creates an advantageous economy of scale. Modular chiclet designs can be easily built or altered to afford interconnection of the exact number of contacts desired, relieving the user of having to select an oversized connector.
Each chiclet module can independently mate to a designated pattern of pads positioned along a substrate edge. The substrate may be either a printed circuit card or any other embodiment of contacts residing along an edge of a thin insulator membrane or flat plane. One or more series of chiclet modules may be held in specific alignment by means of their emplacement in groups, gangs, or arrays residing in an overall plastic or metal frame.
Alignment for mating a stacked series of chiclet assemblies with a series of known target objects, such as a 2-dimensional contact pad pattern, normally presents a challenge of tolerance stack-up of the individual assemblies; the positional error of the last assembly in a series is perturbed by the sum, or accumulated tolerances, of all of the elements between it and the known position of a datum or reference object such as an alignment structure. The present invention advantageously eliminates accumulated tolerance by providing positioning structures in the overall frame for each chiclet module.
The present invention entails an insulator chiclet module whose interior contacts are shielded to the maximum extent by one or more generally box-shaped or tube-shaped shields enveloping as completely as possible the plastic insulator and its internal contacts. These shields comprise a part of the chiclet module subassembly proper, and no other insulating, shielding, or grounding structures are required in the overall frame. Manufacture of the shields into their closed or nearly closed perimeter cross sections may proceed from seamless or extruded tubes or from flat sheet stock folded into box-like or tube-like structures. A single shield may envelop the entire insulator structure and the contacts contained within, or an insulator may be provided with two or more contact-isolating lobes and a set of shields of which envelop individual lobes as completely as possible. In this card edge embodiment, the insulator is bilaterally symmetrical about the midplane of the card it admits, and this insulator accepts two box-like shields, one on each side of the card midplane. The shields include their own contacts members, and either these or their designated pads on the card edges, or both, may be specially elongated or positioned so as to establish, in a pre-emptive manner, shielding or common electrical grounding across the contact interface, in advance of electrical interconnection of other sensitive signal lines.
In some cases, mutual electrical contact between the shields of neighboring contacts is preferred, and the invention provides for chiclet modules with spring tabs or fingers which contact neighboring chiclet modules. In cases where individual electrical pot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High speed card edge connectors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High speed card edge connectors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High speed card edge connectors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3045155

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.