High sensitivity polarized-light discriminator device

Active solid-state devices (e.g. – transistors – solid-state diode – Responsive to non-electrical signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S431000, C257S437000

Reexamination Certificate

active

06545329

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to optical detectors, and more particularly to an integrated solid state light-sensing device that discriminates between different polarizations of optical signals, arrays incorporating such light sensing devices and the corresponding methods for using such devices.
BACKGROUND OF THE INVENTION
Conventional polarized-light detectors will typically require the use of polarizing filters/lenses that are positioned proximate the photodetector to achieve detection of the selected polarization. In this manner, a discrete filter and/or lens is required for each particular polarization detection scheme. As such, these detectors tend to add bulk and size to the overall light detection systems. Additionally, filtered optical signals tend to decrease the degree of sensitivity of the detection process because less of the optical signal ultimately reaches the light-sensing medium in the photodetector.
The need exists to develop a polarized-light detector that will eliminate the need to incorporate external filters and/or lenses, thereby, decreasing the size of such optical detection systems and allowing a greater degree of sensitivity and polarization discrimination capability. Such a device would have widespread application in optical spectrometry, for example, gas sensing or characterization. Additionally, enhancements in data encryption for optical telecommunications could be realized if the polarized-light detector allows for the detection of optical signals transmitted on a selected polarization of light.
Recent advancements in optical communication technology have led to the development of solid state polarized light emitters that incorporate the use of magnetic materials in conjunction with light emitting media. By incorporating these magnetic materials, such as Giant Magnetoresistance (GMR) materials or Dilute Magnetic Semiconductor (DMS) materials, the emitters eliminate the need for optical filters and/or lenses that would typically be used to convert the emitted light to the desired polarization (i.e., right.circularly polarized, left circularly polarized, etc.). In addition, by changing the direction of the applied magnetic field, it is possible to alter the type of polarized light emitted. The resulting emitters occupy less space, are generally more efficient and typically provide for devices that can be manufactured at a lower cost.
A GMR multilayer stack operates under the principle that very large changes in resistance can be realized in materials comprised of alternating very thin layers of various metallic elements. The general structure of GMR multilayer stacks is alternating ferromagnetic and non-ferromagnetic spacer layers, each a few atomic layers thick. The thickness of the spacer layer is such that the magnetic moments of successive ferromagnetic layers are aligned anti-parallel to each other in the absence of an applied magnetic field. It is observed that the resistance of the structure is much higher when the magnetic moments of the adjacent magnetic layers are aligned antiparallel than when they are parallel. Switching from the antiparaliel to the parallel configuration can be achieved by an applied magnetic field. This effect is referred to as giant magnetoresistance (GMR).
Dilute magnetic semiconductors (DMSs), based on manganese doped II-VI and III-V host materials, for example, have recently received a large amount of attention for their unique combination of magnetic and electronic properties. DMSs are formed by substituting a fraction of cations with a magnetic ion. These alloys exhibit a variety of novel magneto-optical properties coming from the exchange interaction between the magnetic ions and the conduction or valence electrons (s±p exchange interaction).
By incorporating a spin filter layer in a polanrzed-light detector it is possible to eliminate the need to incorporate external filters and/or lenses in the detector construct. This improvement would decrease the size of such optical detection systems and allow a greater degree of sensitivity and polarization discrimination capability.
SUMMARY OF THE INVENTION
The present invention provides for an improved integrated solid state light-sensing device that discriminates between different polarizations of light. The device incorporates a spin filter layer between the light-sensing medium and the backside contact of a conventional photodiode structure. Standard polarized-light detectors require the use of polarizing filters and/or lenses that are typically placed in front of the photodetector. The present invention eliminates the need for polarizing lenses and/or filters, thereby decreasing the overall size and complexity of a light detection system. Additionally, by providing for the capability to change the magnetization direction in the spin filter layer, the device's sensitivity can be altered from a first polarization to a second polarization. The degree of sensitivity of the device should be heightened due to the device's capability to allow the entire incident optical signal to reach the light-sensing medium unfiltered.
A polarized-light discriminator device according to the present invention comprises a conventional photodiode having a first contact disposed on the backside of a light-sensing medium and a second contact disposed on the frontside of the light-sensing medium. A spin filter medium, typically a Giant Magnetoresistance (GMR) multilayer stack, a Dilute Magnetic Semiconductor (DMS), or a ferromagnetic layer is disposed between the backside of the light-sensing medium and the first contact.
Polarized light incident on the light sensing medium excites electrons with a preferred spin polarization into the conduction band of the light-sensing medium. The spin polarization preference is governed by selection rules for the light sensing medium and the type of light polarization. The application of a reverse bias voltage to the first and second contact causes the optically excited, spin polarized electrons in the light-sensing medium to move toward the spin filter medium and the first contact. In the presence of a magnetic field, typically proximate to the spin filter medium, a net magnetization will be induced in the spin filter medium. The magnetic field may be an external magnetic field, a local magnetic field, or any other magnetic field suitable for inducing a net magnetization in the spin filter medium. The direction of induced magnetization determines the type of spin polarized electrons transmitted (or reflected) by the spin filter medium.
The device typically incorporates an anti-reflective coating layer disposed on the frontside of the light-sensing medium (i.e., the optical signal receiving side of the photodiode) that serves to increase the amount of the incident optical signal that reaches the light-sensing medium. In embodiments in which the second contact is a grid-like array of one or more contact pads the anti-reflective coating layer generally surrounds the one or more contact pads. In embodiments in which the second contact is a transparent conductive layer, such as Indium Tin Oxide or the like, the anti-reflective coating layer may be formed directly on the frontside of the light-sensing medium followed by the transparent conductive layer or the transparent conductive layer may be formed directly on the frontside of the light-sensing medium followed by the anti-reflective coating layer.
In an alternate embodiment, the polarized-light discriminator device of the present invention comprises a light-sensing substrate having semiconductor characteristics, a spin filter layer, typically a GMR multilayer stack, a DMS material or a ferromagnetic material, disposed on the backside of the light-sensing substrate and a contact layer disposed on the spin filter layer. The frontside of the light-sensing substrate has disposed thereon an anti-reflective coating layer and one or more contacts. The application of a magnetic field to the spin filter layer causes the device to discriminate between different polarizations o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High sensitivity polarized-light discriminator device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High sensitivity polarized-light discriminator device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High sensitivity polarized-light discriminator device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3090588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.