High-resolution optical microscope

Optical: systems and elements – Compound lens system – Microscope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S387000, C359S327000, C356S301000

Reexamination Certificate

active

06690509

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to the field of direct-view optical microscopes and, more particularly, to a method and apparatus for using high-energy light from a phenomenon known as non-resonant Raman scattering to illuminate a living biological specimen.
BACKGROUND OF THE INVENTION
Since their invention in the late 1500s, light microscopes have enhanced our knowledge of basic biology, biomedical research, medical diagnostics, and materials science. Although the science of microscopy has advanced to include a variety of techniques to enhance resolution, the fine-resolution observation of living biological specimens has remained elusive.
Continuing advances in microbiology require a closer and closer study of biochemical events that occur on a cellular and intracellular level. The challenge in microscopy today is not only the enhancement of finer and finer resolution, but also the development of techniques for observing biochemical events in real time, as they happen, without destroying the biological specimen in the process.
Resolution is the ability of a microscope to distinguish between two objects that are very close together. A microscope with a resolution of 1,000 Å (1,000 Angstroms; equal to 100 nanometers or 100×10

9 meters), for example, can make objects as close together as 100 nanometers independently visible. Objects and features smaller than 100 nanometers cannot be resolved (i.e., distinguished) by this microscope. Below is a list of the resolution or practical resolving power of several types of microscopes currently available:
2,000 Å
Visible Light Microscope
1,000 Å
Ultraviolet Microscope
150 to 300 Å
Scanning Electron Microscope
2.0 to 4.0 Å
Transmission Electron Microscope
Although electron microscopes offer very fine resolution, the specimen must be prepared by high-vacuum dehydration and is subjected to intense heat by the electron beam, making observation of living specimens impossible. The dehydration process also alters the specimen, leaving artifacts and cell damage that were not present in nature. Also, In order to view the steps in a biological process, dozens of specimens must be viewed at various stages in order to capture each desired step in the process. The selected specimens must then be prepared. Specimen preparation can take up to two hours each.
The high cost of an electron microscope represents another barrier to its use in the life sciences. Electron microscopes are large and often require an entire room. The operation and adjustment of an electron microscope requires highly-skilled technicians, introducing yet another cost of maintaining and staffing an electron microscopy facility.
The ultraviolet microscope offers finer resolution and better magnification than an ordinary light microscope, but it has serious disadvantages for the study of living specimens. Ultraviolet light damages or kills many kinds of living biological specimens, making observation impossible.
When ultraviolet light strikes a specimen, it excites fluorescence within the molecules of the specimen so that the specimen itself emits a fluorescent light. If the specimen does not produce fluorescence naturally, it must be stained with a fluorescent dye. Many fluorescent dyes bind strongly to elements such as enzymes within living cells, changing their qualities and significantly altering the cellular biochemistry. Other dyes produce too much fluorescence or absorb too much of the ultraviolet light to be useful.
Like electron microscopes, the operation of an ultraviolet microscope requires a great deal of skill. Because ultraviolet light damages the human eye, the image can only be observed by ultraviolet video cameras or specially-equipped still cameras. Also, the quartz optics required for ultraviolet microscopes are much more expensive than the glass components used in visible light microscopes.
The electron and ultraviolet microscopes available today do no offer a technique for observing living, unaltered biological specimens in real time.
The Nature of Light
Light is sometimes referred to as a type of electromagnetic radiation because a light wave consists of energy in the form of both electric and magnetic fields. In addition to the light we can see, the electromagnetic spectrum includes radio waves, microwaves, and infrared light at frequencies lower than visible light. At the upper end of the spectrum, ultraviolet radiation, x-rays, and gamma rays travel at frequencies faster than visible light.
Wavelength is the distance between any two corresponding points on successive light waves. Wavelength is measured in units of distance, usually billionths of a meter. The human eye can see wavelengths between 400 and 700 billionths of a meter.
Frequency is the number of waves that pass a point in space during any time interval, usually one second. Frequency is measured in units of waves per second, or Hertz (Hz). The frequency of visible light is referred to as color. For example, light traveling at 430 trillion Hz is seen as the color red.
The wavelength of light is related to the frequency by this simple equation (Equation One),
f
=
c
L
,
where c is the speed of light in a vacuum (299,792,458 meters per second), f is the frequency in Hz, and L is the wavelength in meters.
Microscope Resolution
The resolution or resolving power of a light microscope can be calculated using Abbe's Formula,
D
=
L
2

(
NA
)
,
where D is the resolving power of a microscope in meters, L is the wavelength in meters of the light source, and NA is the numerical aperture of the microscope. The numerical aperture, generally, indicates the angle at which light strikes the specimen being viewed.
Light Scattering
When a light wave passes through a specimen, most of the light continues in its original direction, but a small fraction of the light is scattered in other directions. The light used to illuminate the specimen is called the incident light. The scattering of incident light through various specimens was studied by Lord John William Strutt, the third Baron Rayleigh (Lord Rayleigh) in the late 1800s and later by Albert Einstein and others.
Lord Rayleigh observed that a fraction of the scattered light emerges at the same wavelength as the incident light. Because of his observation, light that is scattered at the same wavelength as the incident light is a phenomenon called Rayleigh scattering (also called resonant scattering or elastic light scattering).
In 1922, Arthur H. Compton observed that some of the scattered light has a different wavelength from the incident light. Compton discovered that, when light passes through a specimen, some of the light scatters off the electrons of the specimen molecules, producing scattered light in the X-ray region of the spectrum.
Raman Scattering
In 1928, Professor Chandrasekhara V. Raman and Professor K. S. Krishnan discovered that the scattered light observed by Compton was caused by vibrations within the molecules of the specimen. Because of his discovery, light that is scattered due to vibrations within the molecules of a specimen is a phenomenon called Raman scattering (also called non-resonant or inelastic light scattering). In 1930, Raman received the Nobel Prize in Physics for his discovery.
When a specimen is bombarded with incident light, energy is exchanged between the light and the molecules of the specimen. The molecules vibrate, producing the phenomenon known as Raman scattering. The molecular vibrations cause the specimen itself to emit scattered light, some of which scatters at a higher frequency (f+&Dgr;f) than the incident light frequency (f), and some of which scatters at a lower frequency (f−&Dgr;f). The &Dgr;f represents the change in frequency (sometimes called the frequency shift) produced by Raman scattering.
In summary, when incident light strikes a specimen, the scattered light includes Rayleigh-scattered light at the same frequency (f) as the incident light, higher frequency (f+&Dgr;f) Raman-scattered light, and lower-frequency (f−&Dg

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High-resolution optical microscope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High-resolution optical microscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-resolution optical microscope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3310580

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.