Radiant energy – Invisible radiant energy responsive electric signalling – With or including a luminophor
Reexamination Certificate
2000-10-16
2003-03-18
Hannaher, Constantine (Department: 2878)
Radiant energy
Invisible radiant energy responsive electric signalling
With or including a luminophor
C250S483100, C250S486100
Reexamination Certificate
active
06534772
ABSTRACT:
BACKGROUND AND SUMMARY OF THE INVENTION
The present invention relates to a phosphor screen for detecting radiation, particularly X-rays, utilizing phosphors disposed in microchannels disposed in a planar substrate.
Fine detail visualization, high-resolution high-contrast images are required for many X-ray medical imaging systems and particularly in mammography. The resolution of X-ray film/screen and digital mammography systems is currently limited to 20 line pairs/mm and 10 line pairs/mm, respectively. In particular, light scattering by the phosphor particles and their grain boundaries results in loss of spatial resolution and contrast in the image. In order to increase the resolution and contrast, scattering of the visible light must be decreased. The present invention is directed to a novel microchannel composite screen design, which provides high resolution, high contrast, and efficient X-ray to visible light conversion screens for X-ray imaging. The microchannel phosphor screen can be used in both electronic (digital) and film (analog) X-ray imaging.
A conventional X-ray screen, as shown in
FIG. 1
herein has a thickness of about 30-300 microns (&mgr;m) and consists of phosphor particles with a mean size between a few to 10 microns. The light generated in the screen by the incident X-ray diffuses towards the film emulsion over the finite thickness of the screen material. As the light diffuses, it spreads out which results in a loss of spatial resolution and contrast in the image. To improve resolution and contrast, thinner screens could be employed. However, use of the standard larger-particle phosphors in thin screens results in grainy images, poor resolution and low X-ray absorption. It is therefore necessary to significantly reduce the phosphor particle size and/or reduce light scattering to improve image resolution.
There are two well known scintillation screens for medical X-ray applications, both produced by Eastman Kodak and referred to as “Lanex™ Regular” and “Min R™”. These screens both comprise a layer of scintillation material disposed on a polymer layer. The Lanex regular screen has relatively high light output per unit of X-rays, but a low resolution of only about 5 line pairs per millimeter (lp/mm). The Min R screen is thinner than, and has a light output of only about 50%, of the Lanex regular screen, but a higher resolution of 12-13 lp/mm, although the higher resolution images are generally of lower contrast. The present invention provides microchannel based X-ray screens that have greater than 20 lp/mm and a light output a significant percentage of the Min R screen. As currently developed, the microchannel based X-ray detectors using 10 micron microchannels have a theoretical resolution of over 40 lp/mm and a light output of about 25% of the Min R screen (12% of Lanex regular screen).
It has been determined that the highest resolution and lowest light scattering could be achieved only if the phosphors are disposed in microchannels. When microchannel substrates are filled with phosphors, a new class of high resolution microchannel phosphor screens become available for various medical imaging applications. By proper selection of the phosphors and substrate materials, the X-ray generated light propagates in a waveguide mode by means of internal reflection, thereby significantly reducing scattering. Thus, the microchannel screen of the present invention can dramatically enhance contrast and resolution and ensure more accurate detection and better diagnostic imaging capabilities.
Our previous work in the design and construction of microchannel based X-ray screens can be found in U.S. Pat. No. 5,952,665; issued Sep. 14, 1999 Entitled “Composite Nanophosphor Screen for Detecting Radiation”; U.S. patent application Ser. No. 09/385,995 filed Aug. 30, 1999 Entitled “Microchannel High Resolution X-ray Sensor Having an Integrated Photomultiplier”, U.S. patent application Ser. No. 09/197,248 filed Nov. 20, 1998 Entitled “Composite Nanophosphor Screen For Detecting Radiation Having Optically Reflective Coatings” and PCT published application No. WO 99/28764. The disclosures of these previous US patent applications and issued patent is hereby incorporated by reference as if fully set forth herein.
It has also been determined that phosphor filled microchannel plates for radiation detection should use a geometry and construction optimized for the particular type of use to which the plate is to be put. A number of prior art patents have proposed to fabricate high resolution X-ray screens, by cutting and/or ablating, standard scintillation screens and filling in the cuts with reflective or low refractive index material. Other approaches in the prior art have utilized microchannel plates filled with phosphors. However, without a systematic approach and an optimization of the microchannel's and phosphor's construction and dimensions and the relationship between the microchannels and the phosphors, the plates will not emit any useful amount of light. If the plate design and construction is not optimized, the visible light output will be severely compromised. Indeed it is possible that, without proper design, almost all (≈99%) of the visible light generated by the phosphors will be lost in the microchannels, thus rendering the plates useless even though the phosphors efficiently converted the absorbed X-ray energy to visible light.
In order to correctly design a microchannel plate for radiation detection a critical design feature is that the maximum amount of the light generated by the phosphors is directed to the light sensor and not in any other direction. In this regard, the microchannel plate, the phosphors and the relationship between the microchannel and phosphors dimensions must be carefully considered. Regarding the microchannels, their walls must sufficiently smooth so that they reflect the light down the microchannels towards the light sensor and not in random directions and such that they will be capable of being coated with a highly reflective coating. A less than highly reflective coating will also cause considerable loss of the light impinging on it.
Loss of light generated by the phosphors in the microchannels can also be attributed to the scattering of the generated light by “scattering surfaces” associated with the phosphor particles. The phosphors provide numerous scattering surfaces if their dimensions, their size relative to the size of the microchannels, and their size distribution are not carefully controlled, so that the phosphors located further down the channel will not scatter the light generated by the phosphors above them. The size and dimensions of the microchannels and the phosphors themselves must also be correlated with the X-ray energy falling upon the plate so that the optimum light output is delivered to the light detector. Light scattering by the phosphor particles can also be minimized by the use of index matching materials disposed in the microchannels with the phosphors. Each microchannel can be analogized to an optical fiber in that each parameter of the optical fiber, and the microchannels and phosphors used herein, should be arranged so that the light is guided towards the light sensor with minimal loss.
A goal of the present invention is to provide a high resolution high contrast X-ray screen which can be used both for analog (film) and digital systems. The concept of a microchannel based phosphor plate provides that X-ray radiation can be measured in both digital and analog mode with similar resolution. Several limitations in the existing systems such as loading factors, sensitivity, contrast and resolution are optimized and improved significantly in the proposed system. A portable X-ray imaging system capable of digital, large area imaging for teleradiology can be built. Such an X-ray imaging system would, for example, include an X-ray generator, a microchannel based phosphor screen, a built-in detector or a CCD or CMOS camera, processing electronics and a high resolution display.
In addition to integration with light
Bhargava Rameshwar Nath
Chhabra Vishal
Gallagher Dennis
Herko Samuel P.
Kulkarni Bharati S.
Botjer William L.
Hannaher Constantine
Lee Stan
Nanocrystal Imaging Corp.
LandOfFree
High resolution high output microchannel based radiation sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High resolution high output microchannel based radiation sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High resolution high output microchannel based radiation sensor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3044721