High-rate quantum key distribution scheme relying on...

Cryptography – Key management – Key distribution

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C380S256000, C359S238000

Reexamination Certificate

active

07403623

ABSTRACT:
One aspect of the present invention is related to a quantum cryptographic scheme comprising at least one sending unit including a physical means of encoding and distributing a raw key in the quadrature components of quantum coherent states that are continuously modulated in phase and amplitude, at least one receiving unit containing a physical means of performing homodyne detection of the quantum coherent states in order to measure the quadrature components of the states, a quantum channel for connecting the sending unit to the receiving unit, a two-way authenticated public channel for transmitting non-secret messages between the sending unit and the receiving unit, a quantum key distribution protocol ensuring that the information tapped by a potential eavesdropper can be estimated from the quantum channel parameters, and a direct or reverse reconciliation protocol that converts the raw continuous data into a common binary key.

REFERENCES:
patent: 5307410 (1994-04-01), Bennett
patent: 5339182 (1994-08-01), Kimble et al.
patent: 5515438 (1996-05-01), Bennett et al.
patent: 5675648 (1997-10-01), Townsend
patent: 5757912 (1998-05-01), Blow
patent: 5764765 (1998-06-01), Phoenix et al.
patent: 5768378 (1998-06-01), Townsend et al.
patent: 5953421 (1999-09-01), Townsend
patent: 5999285 (1999-12-01), Brandt et al.
patent: 6272224 (2001-08-01), Mazourenko et al.
patent: 6289104 (2001-09-01), Patterson et al.
patent: 6438234 (2002-08-01), Gisin et al.
patent: 6522749 (2003-02-01), Wang
patent: 6529601 (2003-03-01), Townsend
patent: 6678379 (2004-01-01), Mayers et al.
patent: 6778669 (2004-08-01), Lehureau
patent: 6801626 (2004-10-01), Nambu
patent: 7266303 (2007-09-01), Linden et al.
patent: 2002/0041687 (2002-04-01), Parks et al.
patent: 2002/0106084 (2002-08-01), Azuma et al.
patent: 2003/0002674 (2003-01-01), Nambu et al.
patent: 2004/0141618 (2004-07-01), Lo et al.
Namiki et al. “Practical Limitation for Continuous-Variable Quantum Cryptography using Coherent States”, The American Physical Society, Physical Review Letters, vol. 92, No. 11, Mar. 16, 2004. pp. 117901-1 to 117901-4.
Gisin, N., Ribordy, G., Tittel, W. & Zbinden H.,Rev. Mod. Phys. 74, 145 (2002).
Hillery, M., Quantum cryptography with squeezed states,Phys. Rev. A61, 022309-1-022309-8 (2000).
Ralph, T. C., Continuous variable quantum cryptography,Phys. Rev. A61, 010303(R)-1-010303-4 (1999).
Ralph, T. C., Security of continuous-variable quantum cryptography.,Phys. Rev. A62, 062306-1-062306-7 (2000).
Reid, M. D., Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations,Phys. Rev. A62, 062308-1-062308-6 (2000).
Gottesman, D. & Preskill, J., Secure quantum key distribution using squeezed states,Phys. Rev. A63, 022309-1-022309-18 (2001).
Cerf, N. J., Lévy, M. & Van Assche, G. Quantum distribution of gaussian keys using squeezed states,Phys. Rev. A63, 052311-1-052311-5 (2001).
Bencheikh, K., Symul, Th., Jankovic, A. & Levenson, J.A., Quantum key distribution with continuous variables,J. Mod. Optics48, 1903-1920 (2001).
Cerf, N.J., Iblisdir, S. & Van Assche, G., Cloning and cryptography with quantum continuous variables,Eur. Phys. J. D18, 211-218 (2002).
Silberhorn, Ch., Korolkova, N. & Leuchs, G., Quantum key distribution with bright entangled beams,Phys. Rev. Lett. 88, 167902-1-167902-4 (2002).
Grosshans, F. & Grangier, Ph., Continuous variable quantum cryptography using coherent states,Phys. Rev. Lett. 88, 057902-1-057902-4 (2002).
Cerf, N.J., Ipe, A. & Rottenberg, X., Cloning of continuous variables,Phys. Rev. Lett. 85, 1754-1757 (2000).
Cerf, N.J. & Iblisdir, S, Optimal N-to-M cloning of conjugate quantum variables,Phys. Rev. A62, 040301(R)-1-040301-3 (2000).
Grosshans, F. & Grangier, Ph, Quantum cloning and teleportation criteria for continuous quantum variables,Phys. Rev. A64, 010301(R)-1-010301-4 (2001).
Duan, L.-M., Giedke, G., Cirac, J. I. & Zoller, P., Entanglement purification of gaussian continuous variable quantum states,Phys. Rev. Lett. 84, 4002-4005 (2000).
Poizat, J.Ph., Roch, J.-F. & Grangier, P., Characterization on quantum non-demolition measurements in optics,Ann. Phys. (Paris) 19, 265-297 (1994).
Grangier, Ph., Levenson, J. A. & Poizat, J.-Ph., Quantum non-demolition measurements in optics,Nature396, 537-542 (1998).
Grosshans, F. & Grangier, Ph., Reverse reconciliation protocols for quantum cryptography with continuous variables,E-print arXiv:quant-ph/0204127-1-0204127-5 (Apr. 2002).
Bennett, C.H. & Brassard, G., Quantum cryptography: Public key distribution and coin tossing,Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 175-179 (IEEE, NewYork, 1984).
Brassard, G. & Salvail, L., Secret-key reconciliaiton by public discussion,Advances in Cryptology—Eurocrypt'93, Lecture Notes in Computer Science, 410-423 (Springer-Verlag, New York, 1993).
Van Assche, G., Cardinal, J. & Cerf, N.J., Reconciliation of a quantum-distributed Gaussian key,E-print arXiv:cs.CR/0107030 (2002).
Maurer, U. M. & Wolf, S., Information theoretic key agreement : from weak to strong secrecy for free,Advances in Cryptology—Eurocrypt 2000, Lecture Notes in Computer Science, 351-368 (Springer-Verlag, New York, 2000).
Maurer, U.M., Secret key agreement by public discussion from common information,IEEE Trans. Inform. Theory39, 733-742 (1993).
Bennett, C. H., Brassard, G., Crépeau, C. & Maurer, U.M., Generalized privacy amplifiction,IEEE Trans. on Inform. Theory41, 1915-1935 (1995).
Carter, J.L. & Wegman, M.N., Universal Classes of Hash Functions,J. of Comp. and Syst. Sci. 18, 143-154 (1979).
Schönhage, A., Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2,Acta Informatica7, 395-398 (summary in English) (1977).
Brent, R.P. Larvala, S. & Zimmermann, P., A fast algorithm for testing irreductibility of trinomials mod 2,Tech. Rep., Oxford University Computing Laboratory, 1-16 (2000).
Braunstein, S.L. & Pati, A.K., Quantum information with continuous variables, table of contents, Kluwer Academic, Dordrecht, 2003.
Stucki, D., Gisin, N., Guinnard, O., Ribordy, G. & Zbinden H., Quantum Key Distribution over 67 km with a plug&play system,E-print arXiv:quant-ph/0203118 (2002).
Buttler, W.T., Lamoreaux, S.K., Torgerson, J.R., Nickel, G.H., Donahue, C.H., & Peterson, C.G., Fast, efficient error reconciliation for quantum cryptography.E-print arXiv:quant-ph/0203096 (2003).
Grosshans F., Van Assche G., Wenger J., Brouri R., Cerf N. J. & Grangier Ph., Quantum key distribution using gaussian-modulated coherent states,Nature421, 238-241 (2003).
Tittle et al., “Quantum Cryptography,”Physics World, 41-45 (Mar. 1998).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High-rate quantum key distribution scheme relying on... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High-rate quantum key distribution scheme relying on..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-rate quantum key distribution scheme relying on... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2802164

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.