Measuring and testing – Speed – velocity – or acceleration – Angular rate using gyroscopic or coriolis effect
Reexamination Certificate
2001-06-13
2003-04-22
Moller, Richard A. (Department: 2856)
Measuring and testing
Speed, velocity, or acceleration
Angular rate using gyroscopic or coriolis effect
Reexamination Certificate
active
06550329
ABSTRACT:
FIELD OF THE INVENTION
The present invention is drawn to an angular rate sensor of the type utilizing an oscillating resonating element. More specifically, the present invention is drawn to the shape and placement of actuators and pick-offs upon resonating elements of rate gyroscopes.
BACKGROUND OF THE INVENTION
Rate gyroscopes operate on the principle of inertia. Standing waves are excited in a resonating element to produce a desired mode of oscillation having a predetermined number of nodes. The oscillations have an amplitude, a frequency, and an inherent oscillatory inertia that is independent of the linear and rotational inertia of the gyroscope itself. When the resonating element is rotated about its sensing axis, the oscillations will in large part maintain their absolute spatial orientation. However, in maintaining their absolute spatial orientation, the nodes that define the desired mode of oscillation will rotate with respect to the physical structure of the resonating element. This rotation of the nodes is proportional to the physical rotation applied to the resonating element. Taking advantage of this phenomena, it is possible to measure the rate of rotation and determine the magnitude and direction of the rotation that the resonating element has been subjected to.
Solid state gyroscopes based on the principle described above are capable of sensing rotation only, and then only about a single axis. To obtain information sufficient to determine the relative attitude of a body, it is necessary to group at least three such gyroscopes in an orthogonal relationship covering the x, y, and z Cartesian axes.
DESCRIPTION OF PRIOR ART
The terms “gyroscope” and “angular rate sensor” as used herein are interchangeable and refer to both spinning and oscillating or vibrating type devices. One well known type of angular rate sensor comprises the use of piezoelectric ceramic crystals in a paired tuning fork arrangement. Examples of this type of angular rate sensor are shown in U.S. Pat. Nos. 4,628,7734 to Watson and 4,671,112 to Kimura. In this type of sensor a pair of drive elements are energized to induce a controlled vibration therein. The drive elements are arranged such that the oscillations induced are in a single plane. Sensing elements are coupled to the ends of the drive elements and oscillate along with the drive elements in the single plane. However, the sensing elements are arranged so that flexure of the sensing elements will take place only in a plane perpendicular to the plane of vibration of the driving elements. The application of a rotational force to the vibrating sensor elements in the perpendicular plane induces a sensed output signal that may be monitored and filtered to characterize the angular rate of change of the sensing object to which the sensing elements are mounted. Though the tuning fork type of angular rate sensor attempts to isolate the sensing elements from the drive elements by rotating the sensing elements
90
□ from the drive elements, small bending forces due to the oscillation of the drive elements are imposed upon the sensing elements. These undesirable bending forces create voltage signals which may degrade the signal to noise ratio of the voltage output of the sensing elements and may indicate falsely that the angular rate sensor is being rotated about its sensitive axis.
Another type of angular rate sensor utilizes a cup or bell shaped resonator which is forced to oscillate in known manner. One such sensor is shown in U.S. Pat. No. 5,218,867 to Varnham, et al. See
FIGS. 1-3
. The cup portion of the Varnham resonator is supported upon a stem which is in turn secured to the chassis of the sensor. Varnham utilizes a pair of actuators arranged at an angle of 45□ to one another to induce a desired mode of oscillation in the resonator. The resonator itself is fabricated from a piezoelectric ceramic material and the actuators are thin or thick film conductive materials that are applied directly to the wall of the resonator in a known manner. In order to sense a rate of rotation, the Varnham device provides a pair of pick-offs, identical in construction to the actuators and applied to the resonator in diametric opposition to the pair of actuators. An actuator drive network acts through the actuators to impose a phase locked voltage waveform upon the resonator, thereby causing the resonator to assume a desired mode of oscillation. The pick-offs sense variations in the desired mode of oscillation caused by angular rotation of the sensor. The signals from the pick-offs are demodulated using the imposed driving voltage waveform. The resulting signal is proportional to the angular rate of rotation of the sensor and by integrating the resulting signal over time, one can determine the actual angle through which the sensor has rotated. The angle of rotation is, in turn, used by the actuator drive network to modify the waveform being imposed upon the resonator to bring the resonator back to the desired mode of oscillation.
Problems with angular rate sensors of the type patented by Varnham include a relatively low Q value, low sensitivity, and low accuracy. For instance, the actuators and pick-offs of prior art devices such as the Varnham device, are uniformly large patches of conductive material applied to the resonator in a manner such that the actuators and pick-offs span a wide range of stress gradients in the resonator walls. Because piezoelectric voltages are generally proportional to the stress in a piezoelectric material, a voltage applied across a number of stress gradients causes the areas of differing stress within the piezoelectric material to work against one another, thereby reducing the Q value of the resonator. Likewise, a voltage measured across a wide-ranging stress gradient is more likely to be an average of the voltages produced in the resonator at each of the stress gradients that a pick-off crosses.
In addition, the application of actuators and pick-offs across stress gradients, in combination with non-uniform voltage responses in the piezoelectric materials, may make it more difficult to force the resonator to oscillate in its desired mode. In order to ensure the proper oscillation, much more energy is expended in the correction of the vibrations, thereby lowering the Q value of the resonator. The Q value of a vibrating system is the ratio of the magnitude of the total energy of a vibrating system to the magnitude of the energy added to the system during each oscillatory cycle.
The large size of the conductive patches of the pick-offs contributes to the low accuracy of rate gyroscopes of the type patented by Varnham.
FIG. 3
illustrates prior art pick-off and actuator conductors C having large surface areas. Piezoelectric materials are not uniform in their voltage response and therefore it is frequently the case that a pick-off having a large surface area will sense net voltages skewed by an uneven voltage response of the piezoelectric material. The larger the area of coverage of the pick-off, the more likely it is that the voltages sensed by the pick-offs will comprise a signal due to uneven voltage response of the piezoelectric material of the resonator. And because the actual voltages sensed by the pick-offs are quite small, voltage signal components due to uneven voltage responses frequently alter the signal to noise ratio of the sensed voltages to an extent that makes it difficult to determine accurately the rate and magnitude of rotation of the gyroscope. Further more, because it is also frequently the case that the voltage response of respective areas of the piezoelectric materials that make up a resonator may vary independently with changes in the ambient temperature of the operating environment of the gyroscope, the noise to signal ratio of the sensed voltages may become further degraded.
In general, piezoelectric materials are made up of many individual crystals that have been sintered together and given a particular polarity by the application of a strong DC voltage. Where this polarization is performed over
Moller Richard A.
Moore & Hansen
Watson Industries Inc.
LandOfFree
High Q angular rate sensing gyroscope does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High Q angular rate sensing gyroscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High Q angular rate sensing gyroscope will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3052576