Coherent light generators – Particular resonant cavity – Distributed feedback
Reexamination Certificate
2005-06-21
2005-06-21
Wong, Don (Department: 2828)
Coherent light generators
Particular resonant cavity
Distributed feedback
C372S043010, C372S046012, C372S050121
Reexamination Certificate
active
06909734
ABSTRACT:
A tunable laser is disclosed including a gain section for creating a light beam over a bandwidth, a phase section for controlling the light beam around a center frequency of the bandwidth, a waveguide for guiding and reflecting the light beam in a cavity including a relatively low energy bandgap separate-confinement-heterostructure (SCH), a front mirror bounding an end of the cavity and a back mirror bounding an opposite end of the cavity wherein gain is provided by at least one of the group comprising the phase section, the front mirror and the back mirror.
REFERENCES:
patent: 4622672 (1986-11-01), Coldren et al.
patent: 4896325 (1990-01-01), Coldren
patent: 5084894 (1992-01-01), Yamamoto
patent: 5088097 (1992-02-01), Ono et al.
patent: 5145792 (1992-09-01), Hirata
patent: 5274649 (1993-12-01), Hirayama et al.
patent: 5325392 (1994-06-01), Tohmori et al.
patent: 5347526 (1994-09-01), Suzuki et al.
patent: 5379318 (1995-01-01), Weber
patent: 5392311 (1995-02-01), Makuta
patent: 5452118 (1995-09-01), Maruska
patent: 5579328 (1996-11-01), Habel et al.
patent: 5581572 (1996-12-01), Delorme et al.
patent: 5715271 (1998-02-01), Huang et al.
patent: 5790581 (1998-08-01), Nitta
patent: 5838714 (1998-11-01), Delorme
patent: 5841799 (1998-11-01), Hiroki
patent: 5936994 (1999-08-01), Hong et al.
patent: 6066859 (2000-05-01), Stegmueller
patent: 6208454 (2001-03-01), Koren et al.
patent: 6345135 (2002-02-01), Reid et al.
patent: WO 99/40654 (1999-08-01), None
H. Ishii et al., “Mode Stabilization Method for Superstructure-Grating DBR Lasers,” Jnl. of Lightwave Technology, 1998, 16(3): 433-442.
G. Sarlet et al., “Wavelength and Mode Stabilization of Widely Tunable SG-DBR and SSG-DBR Lasers,” IEEE Photonics Tech. Lett., 1999, 11(11): 1351-1353.
I.A. Avrutsky et al., “Design of Widely Tunable Semiconductor Lasers and the Concept of Binary Superimposed Gratings (BSG's),” IEEE Journal of Quantum Elec., Apr. 1998, 34(4): 729-741.
L.A. Coldren et al., “Photonic Integrated Circuits,” Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, 1995, ch. 8: 342-391.
L.A. Coldren et al., “Properties of Widely-Tunable Integrated WDM Sources and Receivers,” 1997 Annual Meeting (LEOS), San Francisco, CA, USA, Nov. 1997, Paper No. TuY1, 331-332 [62-63].
L.A. Coldren et al., “Tunable Lasers for Photonic Integrated Circuits,” IEEE Summer Topical on Integrated Optoelectronics, Lake Tahoe, NV, USA, Jul. 1994, Paper No. W4.1, 88-89.
L.A. Coldren, “Widely-Tunable and Vertical-Cavity Lasers: DBR's on Different Planes,” Integrated Photonics Research, San Francisco, CA, USA, Feb. 1994, Paper No. ThA3-1, 75-76.
G. Fish et al., “Compact, 4×4 InGaAsP-InP Optical Crossconnect with a Scaleable Architecture,” IEEE Photonics Tech. Lett., Sep. 1998, 10(9): 42-44.
G. Fish et al., “Improved Compositional Uniformity of InGaAsP Grown by MOCVD Through Modification of the Susceptor Temperature Profile,” Journal of Crystal Growth, 1997, 32-38.
G. Fish et al., “InGaAsP/InP Scaleable, Photonic Crossconnects Using Optically Amplified Suppressed Modal Interference Switch Arrays,” Integrated Photonics Research '98, Victoria, Canada, Mar. 1998, Paper No. ITuE4, 243-245 [39-41].
G. Fish et al., “InGaAsP/InP Suppressed Modal Interference Switches with Integrated Curved Amplifiers for Scaleable Photonic Crossconnects,” Optical Fiber Conference '98, San Jose, CA, USA, Feb. 1998, Paper No. TuH4, 1pp.
G. Fish et al., “Suppressed Modal Interferences Switches with Integrated Curved Amplifiers for Scaleable Photonic Crossconnects,” IEEE Photonics Tech. Lett., Feb. 1998, 10(2)28-30.
M.E. Heimbuch et al., “Tertiarybutylarsine and Tertiarybutylphosphine for the MOCVD Growth of Low Threshold 1.55 μm InxGa1-xAs/InP Quantum-Well Lasers,” Journal of Elec. Materials, 1994, 23(2): 77-81.
H. Ishii et al., “Broad-range Wavelength Coverage (62.4 nm) with Superstructure-Grating DBR Laser,” Elec. Lett., Feb. 29, 1996, 32(5): 454-455.
H. Ishii et al., “Quasicontinuous Wavelength Tuning in Super-Structure-Grating (SSG) DBR Lasers,” IEEE Journal of Quantum Elec., Mar. 1996, 32(3): 433-441.
Y-H. Jan et al., “Widely Tunable Integrated Filter/Receiver with Apodized Grating-Assisted Codirectional Coupler (INVITED),” SPIE Photonics West '98, San Jose, CA, USA, Jan. 1998, Paper No. 3290-232: 24-27.
V. Jayaraman et al., “Continuous-Wave Operation of Sampled Grating Tunable Lasers with 10 mwatt Output Power, >60 nm Tuning, and Monotonic Tuning Characteristics,” Indium Phosphide Conference, Santa Barbara, CA, USA, Mar. 1994, 33-36 [82-85].
V. Jayaraman et al., “Demonstration of Broadband Tunability in a Semiconductor Laser Using Sampled Gratings,” Appl. Phys. Lett., May 1992, 60(19): 110-112.
V. Jayaraman et al., “Extended Tuning Range in Sampled Grating DBR Lasers,” IEEE Photonics Tech. Lett., May 1993, 5(5): 103-105.
V. Jayaraman et al., “Extended Tuning Range Semiconductor Lasers with Sampled Gratings,” LEOS '91, San Jose, CA, USA, Nov. 1991, Paper No. SDL15.5: 82 [113].
V. Jayaraman et al., “Theory, Design, and Performance of Extended Tuning Range Semiconductor Lasers with Sampled Gratings,” IEEE Journal of Quantum Elec., Jun. 1993, 29(6): 92-102.
V. Jayaraman et al., “Very Wide Tuning Range in a Sampled Grating DBR Laser,” Int. Semiconductor Laser Conference, Takamatsu, Japan, Sep. 1992, 108-109.
V. Jayaraman, et al., “Wide Tunability and Large Mode-Suppression in a Multi-Section Semiconductor Laser Using Sampled Gratings,” Integrated Photonics Research '92, New Orleans, LA, USA, Apr. 1992, Paper No. WF1, 306-307 [106-107].
V. Jayaraman et al., “Widely Tunable Continuous-Wave InGaAsP/InP Sampled Grating Lasers,” Elec. Lett., Sep. 1994, 30(18): 90-91.
S-L. Lee et al., “Direct Modulation of Widely Tunable Sampled Grating DBR Lasers,” SPIE, 1996, 2690(223): 223-230 [64-71].
S-L. Lee et al., “Dynamic Responses of Widely Tunable Sampled Grating DBR Lasers,” Photonics Tech. Lett., Dec. 1996, 8(12): 72-74.
S-L. Lee et al., “Field-Induced Guide/Antiguide Modulators on InGaAsP/InP,” Elec. Lett., Jun. 9, 1994, 30(12): 954-955 [86-87].
S-L. Lee et al., “Integration of Semiconductor Laser Amplifiers with Sampled Grating Tunable Lasers for WDM Applications,” IEEE Journal of Selected Topics in Quantum Elect., Apr. 1997, 3(2): 49-61.
B. Mason et al., “Design of Sampled Grating DBR Lasers with Integrated Semiconductor Optical Amplifiers,” IEEE Photonics Tech. Lett., Jul. 2000, 12(7): 1-3.
B. Mason et al. “Directly Modulated Sampled Grating DBR Lasers for Long-Haul WDM Communication Systems,” IEEE Photonics Tech. Lett., 9(3): 46-48.
B. Mason et al., “Monolithic Integration of a Widely Tunable Laser and an Electro-Absorption Modulator,” Integrated Photonics Research '99, Santa Barbara, CA, USA, Jul. 1999, Paper No. RME2, 53-55 [7-9].
B. Mason et al., “Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range,” IEEE Photonics Technology Letters, Sep. 1998, 10(9): 19-21.
B. Mason et al., “Sampled Grating DBR Lasers with 22nm Quasi-Continuous Tuning and Monolithically Integrated Wavelength Monitors,” Int'l. Semiconductor Laser Conf. '98, Nara, Japan, Oct. 1998, Paper No. ThC4, 22-23.
B. Mason et al., “Sampled Grating DBR Lasers with Integrated Wavelength Monitoring,” Integrated Photonics Research '98, Victoria, Canada, Mar. 1998, Paper No. IMD5, 52-54 [13-15].
B. Mason et al., “Tunable Sampled-Grating DBR Lasers with Integrated Wavelength Monitors,” IEEE Photonics Tech. Lett., Aug. 1998, 10(8): 16-18.
B. Mason et al., “Widely Tunable Lasers for Wavelength-Division Multiplexed Communications,” Optical Fiber Communication '97, Dallas, TX
Coldren Larry A.
Fish Gregory A.
Larson Michael C.
Agility Communications, Inc.
Gates & Cooper LLP
Nguyen Dung (Michael) T
LandOfFree
High-power, manufacturable sampled grating distributed Bragg... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High-power, manufacturable sampled grating distributed Bragg..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-power, manufacturable sampled grating distributed Bragg... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3497375