High power laterally antiguided semiconductor light source with

Coherent light generators – Particular active media – Semiconductor

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

372 45, H01S 3085

Patent

active

061670731

ABSTRACT:
A semiconductor structure for use as a laser or amplifier has a multilayer structure including a substrate, an active region, optical confinement and cladding layers on each side of the active region to surround the active region. The structure includes at least one core element at which light emission occurs and interelement regions laterally adjacent to the core element with the effective refractive index of the interelement regions higher than that of the core element to provide antiguiding of light emitted in the core element. The optical confinement and cladding layers on opposite sides of the active region have different indexes of refraction to provide an optical waveguiding structure in the transverse direction in the core element which is asymmetrical and which favors lasing only in the fundamental transverse mode. The structure allows larger core elements to be utilized than otherwise possible and results in a significantly increased light emission spot size enabling much higher emission power levels for lasers and higher saturation power levels for amplifiers.

REFERENCES:
patent: 4745607 (1988-05-01), Koch
patent: 4860298 (1989-08-01), Botez et al.
patent: 4985897 (1991-01-01), Botez et al.
patent: 5101413 (1992-03-01), Botez
patent: 5159604 (1992-10-01), Mehuys et al.
patent: 5272711 (1993-12-01), Mawst et al.
patent: 5606570 (1997-02-01), Botez et al.
patent: 5818860 (1998-10-01), Garbuzov et al.
Botez, D., et al. "Resonant Optical Transmission and Coupling in Phase-Locked Diode Laser Arrays of Antiguides: The Resonant Optical Waveguide Array," Appl. Phys. Lett. 54(22), May 29, 1989, pp. 2183-2185.
Botez, D., et al., "Diffraction-Limited In-Phase-Mode Operation From Uniform Array of Antiguides With Enhanced Interelement Loss," Elec. Lett. 25(19), Sep. 14, 1989, pp. 1282-1283.
Botez, Dan, et al., "Phase-Locked Arrays of Antiguides: Modal Content and Discrimination," IEEE J. of Quantum Electronics, vol. 26, No. 3, Mar. 1990, pp. 482-495.
Botez, D., "High-Power Monolithic Phase-Locked Arrays of Antiguided Semiconductor Diode Lasers," IEEE Proc.-J., vol. 139, No. 1, Feb. 1992, pp. 14-23.
Mawst, L.J., et al., "Design Optimization of ARROW-Type Diode Lasers," IEEE Photonics Technology Letters, vol. 4, No. 11, Nov. 1992, pp. 1204-1206.
Mehuys, D., et al., "5.25-W CW Near-Diffraction-Limited Tapered-Stripe Semiconductor Optical Amplifier," IEEE Photonics Technology Letters, vol. 5, No. 10, Oct. 1993, pp. 1179-1182.
Botez, D., et al., Flat-Phasefront Fanout-Type Power Amplifier Employing Resonant-Optical-Waveguide Structures, Appl. Phys. Lett., vol. 63, No. 23, Dec. 6, 1993, pp. 3113-3115.
Ramanujan, Sujatha, et al., "Temporal Behavior of Resonant-Optical-Waveguide Phase-Locked Diode Laser Arrays," Appl. Phys. Lett., vol. 64, No. 7, Feb. 14, 1994, pp. 827-829.
CLEO/IQEC '94 Advance Program, p. 52, Abstract entitled 'Uniform near-field flat-phase-front antiguided power amplifier with a three-core ARROW master oscillator, distributed prior to May 8, 1994.
Zmudzinski, C., et al., Three-Core ARROW-Type Diode Laser: Novel High-Power, Single-Mode Device, and Effective Master Oscillator for Flared Antiguided MOPAs, Technical Digest CLEO-Europe Conference, Paper CTuP3 Amsterdam, Netherlands, Aug.-Sep. 1994, pp. 169-170.
Mawst, L.J., et al., "Above-Threshold Behavior of High-Power, Single-Mode Antiresonant Reflecting Optical Waveguide Diode Lasers," Appl. Phys. Lett., vol. 66, No. 1, Jan. 2, 1995, pp. 7-9.
Botez, Dan, et al., "Phase-Locked Arrays of Antiguides: Analytical Theory II," IEEE Journal Quantum Electronics, vol. 31, No. 2, Feb. 1995, pp. 244-253.
Golster, I.V., "Single-Cladding Antiresonant Reflecting Optical Waveguide-Type Diode Laser," Optics Lett., vol. 20, No. 21, Nov. 1, 1995, pp. 2219-2221.
Buda, Manula, et al., "Analysis of 6-nm AlGaAs SQW Low-Confinement Laser Structures for Very High-Power Operation," IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, No. 2, Apr. 1997, pp. 173-179.
Choquette, Kent D., IEEE Journal of Selected Topics in Quantum Electronics, vol. 3., No. 3, Jun. 1997, pp. 916-925.
Kawanaka, S., et al., "Strained Single Quantum Well AlGaInP Laser Diodes with an Asymmetric Waveguiding Layer," International Conference on Solid State Devices and Materials, Aug. 1, 1992, pp. 240-242.
Lelong, I.O., et al., "A Pulsed High-Power Quantum Well Laser Using an Asymmetric Waveguide," Semiconductor Science and Technology, vol. 11, No. 4, Apr. 1, 1996, pp. 568-570.
O'Brien, S., et al., "2.2-W Continuous-Wave Diffraction-Limited Monolithically Integrated Master Oscillator Power Amplifier at 854 nm," IEEE Photonics Technolgoy Letters, vol. 9, No. 4, Apr. 1, 1997, pp. 440-442.
Floyd, P.D., et al., "Low-Threshold Laterally Oxidized GaInP-AlGaInP Quantum-Well Laser Diodes," IEEE Photonics Technology Letters, vol. 10, No. 1, Jan. 1, 1998, pp. 45-57.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High power laterally antiguided semiconductor light source with does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High power laterally antiguided semiconductor light source with , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High power laterally antiguided semiconductor light source with will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1003181

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.