Electrical generator or motor structure – Dynamoelectric – Rotary
Reexamination Certificate
2000-11-15
2003-12-02
Le, Dang Dinh (Department: 2834)
Electrical generator or motor structure
Dynamoelectric
Rotary
C310S166000, C318S254100
Reexamination Certificate
active
06657334
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates to motors and their inverter drives.
BACKGROUND OF THE INVENTION
An induction motor is commonly driven by an inverter. An inverter is a device capable of supplying alternating current of variable voltage and variable frequency to the induction motor, allowing for control of machine synchronous speed and thus of machine speed. The inverter may also be used with AC induction generators, and can cause an AC induction motor to act as a generator for braking applications.
In many cases, the cost of the inverter is considerably greater than the cost of the motor being supplied. It is thus necessary to minimize the size of the inverter power electronics in order to control system cost.
Whereas the induction machine itself may have substantial overload capability, and may carry currents of the order of five to ten times full rated current for periods measured in minutes, the overload capability of the inverter electronics is severely limited. Exceeding the voltage or current ratings of the inverter electronics will swiftly cause device failure.
Commonly, inverter electronics is specified such that it can tolerate 150% of nominal full load current for 1 minute, and for any given motor, and inverter will be selected which has the same nominal current capability as that of the motor.
Voltage is set internally by the inverter system or by the rectified supply voltage. Voltage overload is normally not specified, and will cause near instantaneous destruction of semiconductor elements. The voltage ratings of the semiconductors instead set the maximum output voltage of the inverter system, and an inverter will be selected which has a maximum output voltage that matches the operating voltage of the motor at full speed.
With any reasonably sized inverter, substantial motor overload capabilities remain untapped.
In many traction application, there is limited available electrical power. Thus requirements for high overload capability can only be met at low speed, where high torque is required for starting, but reduced speed means that mechanical power output is still low. Such low speed torque requirements require high current to flow though the motor, but do not require high operating voltage. It is thus possible to trade high speed operating capability for low speed overload capability at the design stage of a motor drive system.
By increasing the number of series turns in the motor windings, higher slot current may be achieved with the same terminal current, thus permitting the same inverter to provide greater overload current to the motor. This increase in overload capability comes at a substantial cost. The increased number of series turns means that the motor operating voltage is increased, operation at high speed is prevented.
The number of series turns in a motor is thus related to induction machine impedance, or current versus voltage relation. Normally, an induction machine will have a fixed relationship between synchronous speed and impedance, characterized by the Volts/Hertz ratio. For a given inverter and machine frame, a machine wound with a higher Volts/Hertz ratio will have a lower maximum speed, but higher peak low speed torque.
It is thus necessary to provide for an induction machine drive system in which the induction machine presents a variable Volts/Hertz ratio to the inverter. For high speed operation, the Volts/Hertz ratio would be adjusted to a low value, in order to maintain a suitable induction machine operational voltage. For low speed operation, the Volts/Hertz ratio would be adjusted to a higher value, so as to permit high overload torque operation.
SUMMARY OF THE INVENTION
From the foregoing it will be appreciated that a serious need exists for a motor drive system that has variable impedance. The present invention provides a drive system that can achieve high torque overload at low speeds whilst also being capable of providing sufficient voltage for high speed applications. In the present invention a high phase order induction machine is used with each phase terminal separately connected to an inverter output. The windings of the induction machine are wound as full span connected windings, and the motor terminals are connected with a mesh connection to produce a low impedance output. The inverter is capable of operating with a variable phase sequence that changes the effective impedance of the motor.
A technical advantage of the present invention is that impedance may be electronically varied.
A further technical advantage is that a motor may achieve substantially high torque at low speeds, whilst also being able to operate at high speeds.
A yet further technical advantage is that an inverter output may be better exploited by a motor.
Further technical advantages will become apparent from a consideration of the figures and the ensuing descriptions.
REFERENCES:
patent: 6064172 (2000-05-01), Kuznetsov
patent: 6153953 (2000-11-01), Isozaki et al.
patent: 6175272 (2001-01-01), Takita
Borealis Technical Limited
Dinh Le Dang
LandOfFree
High phase order motor with mesh connected windings does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High phase order motor with mesh connected windings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High phase order motor with mesh connected windings will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3167644