High performance thermoplastic compositions with improved...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S154000

Reexamination Certificate

active

06417255

ABSTRACT:

BACKGROUND OF THE INVENTION
High performance thermoplastic polymers, such as polyetherimides and polyethersulfones have been used to fabricate parts for numerous applications. Each application requires particular tensile and flexural properties, impact strength, heat distortion temperature, and resistance to warp. For example, U.S. Pat. No. 4,455,410 provides a polyetherimide-polyphenylenesulfide blend having good flexural strength characteristics. U.S. Pat. No. 3,983,093 provides polyetherimide compositions having improved solvent resistance and suitable for use in preparing films, molding compounds, coatings, and the like.
These thermoplastic polymers are characterized by a high glass transition temperature, typically above 150° C., which makes them suitable for use in applications that require exposure to high temperatures. A drawback of these materials is that they exhibit poor melt flow properties, which makes processing difficult. Injection molding of thermoplastic polymers, for instance, is more easily performed with a thermoplastic resin that has a higher melt volume rate. A good melt flow behavior is necessary to achieve fast molding cycles and to permit molding of complex parts. At the same time, mechanical properties such as impact/ductility must be maintained in order to pass product specifications.
What is needed in the art is thermoplastic polymers that have improved melt flow behavior without the consequent loss of other desirable characteristics in the finished product.
BRIEF SUMMARY OF THE INVENTION
The present invention overcomes the limitations of the prior art by incorporating additives into thermoplastic polymer resins. In one embodiment, this invention comprises a thermoplastic resin composition comprising a mixture, based on the total weight of the thermoplastic resin composition, of about 88 wt % to about 99 wt % pbw of a thermoplastic polymer resin; and, about 1 wt % to about 12 wt % of an additive selected from the group consisting of phosphonium sulfonate, anhydride, and combinations thereof.
DETAILED DESCRIPTION OF THE INVENTION
It has been found that (aromatic) phosphonium sulfonates as well as (aromatic) anhydride compounds provide highly improved melt flow properties to high performance thermoplastic polymers such as polycarbonates, polyimides (e.g. polyetherimides, polyamideimides, etc.), amorphous polyamides, polysulfones (e.g. polyethersulfones, polyarylsulfones, polyphenylsulfones (PPSU), etc.), poly ketones (e.g. poly(ether ketone), poly(ether ether ketone), etc.), polyphenylene sulfoxide, and poly(phenylene sulfoxide) (PPSO
2
), mixtures thereof, and the like and other high performance thermoplastic resins, without causing detrimental effects on other physical properties, such as mechanical and impact properties.
The high performance thermoplastic polymer of the present invention comprises a thermoplastic polymer preferably having a glass transition temperature exceeding about 150° C., preferably exceeding about 170° C., such as polycarbonates, polyimides (e.g. polyetherimides, polyamideimides, etc.), amorphous polyamides, polysulfones (e.g. polyethersulfones, polyarylsulfones, polyphenylsulfones (PPSU), etc.), poly ketones (e.g. poly(ether ketone), poly(ether ether ketone), etc.), polyphenylene sulfoxide, poly(phenylene sulfoxide) (PPSO
2
), mixtures thereof, and the like; and an anhydride or a phosphonium sulfonate. Other additives are optionally added to the high performance thermoplastic polymer to improve other desirable characteristics.
Polyamide
The polyamide resins useful in the practice of the present invention are a generic family of resins known as amorphous polyamides or amorphous nylons, characterized by the presence of an amide group (—C(O)NH—). Nylon-6 and nylon-6,6 containing aromatic substituents, e.g., phthalamide residues, are the generally preferred amorphous polyamides and are available from a variety of commercial sources. Useful amorphous polyamides, include, for example, nylon-4,6T, nylon-12T, nylon-6,10T, nylon 6,9T, nylon 6/6T and nylon 6,6/6T although other amorphous nylons may be employed. Mixtures of various amorphous polyamides, as well as various amorphous polyamide copolymers, are also useful. The most preferred amorphous polyamide for the blends of the present invention is an amorphous polyamide-6,6 containing isophthalamide residues.
The polyamides can be obtained by a number of well known processes such as those described in U.S. Pat. Nos. 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606, 5,177,149 (which are hereby incorporated by reference), and others. Nylon-6,6T is a condensation product of adipic acid, phthalic acid(s) and 1,6-diaminohexane. Likewise, nylon 4,6T is a condensation product between adipic acid, phthalic acid(s) and 1,4-diaminobutane. Besides adipic acid, other useful diacids for the preparation of nylons include azelaic acid, sebacic acid, dodecane diacid, as well as terephthalic and isophthalic acids, and the like. Other useful diamines include m-xylyene diamine, di-(4-aminophenyl)methane, di-(4-aminocyclohexyl)methane; 2,2-di-(4-aminophenyl)propane, 2,2-di-(4-aminocyclohexyl)propane, among others. Copolymers of caprolactam with diacids and diamines are also useful.
Amorphous polyamides having viscosity of up to and even exceeding about 400 ml/g can be used, with a viscosity of about 90 to about 350 ml/g preferred, and about 110 to about 240 ml/g especially preferred, as measured in a 0.5 wt % solution in 96 wt % sulphuric acid in accordance with ISO 307. Additionally, it is often preferred for the amorphous polyamide to have a very low amine endgroup level to avoid reactions with the anhydrides. Alternatively, the phosphonium sulfonate may preferably be used when the amorphous polyamide contains more than about 5% amine endgroups.
Thermoplastic Polyimides and Polyetherimides
Useful thermoplastic polyimides have the general formula (I)
wherein V is a substituted or unsubstituted, divalent, trivalent, or tetravalent linker without limitation, as long as the linker does not impede synthesis or use of the polyimide. Suitable linkers include but are not limited to: (a) substituted or unsubstituted, saturated, unsaturated or aromatic monocyclic and polycyclic groups having about 5 to about 50 carbon atoms, (b) substituted or unsubstituted, linear or branched, saturated or unsaturated alkyl groups having from 1 to about 30 carbon atoms; and combinations thereof. Suitable substitutions and/or linkers include, but are not limited to, ethers, epoxides, amides, esters, and combinations thereof.
R in formula (I) includes but is not limited to substituted or unsubstituted divalent organic radicals such as: (a) aromatic hydrocarbon radicals having about 6 to about 20 carbon atoms and halogenated derivatives thereof; (b) straight or branched chain alkylene radicals having about 2 to about 20 carbon atoms; (c) cycloalkylene radicals having from about 3 to about 20 carbon atoms, or (d) divalent radicals of the general formula (II)
wherein Q includes but is not limited to divalent radicals of the formula (III)
wherein y is an integer of from 1 to about 5; or combinations thereof.
Preferred classes of polyimides include polyamidimides and polyetherimides, particularly those polyetherimides known in the art which are melt processible, such as those whose preparation and properties are described in U.S. Pat. Nos. 3,803,085 and 3,905,942, each of which is incorporated herein by reference.
Preferred polyetherimide resins comprise more than 1, typically about 10 to about 1000 or more, and more preferably about 10 to about 500 structural units, of the formula (IV)
wherein T is —O— or a group of the formula —O—Z—O— wherein the divalent bonds of the —O— or the —O—Z—O— group are in the 3,3′, 3,4′, 4,3′, or the 4,4′ positions, and wherein Z includes, but is not limited to, divalent radicals of formula (V).
wherein Q includes but is not limited to divalent radicals of the formula (III)
wherein y is an integer of from 1 to about 5; or combinations thereof.
In

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High performance thermoplastic compositions with improved... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High performance thermoplastic compositions with improved..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High performance thermoplastic compositions with improved... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2903235

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.