High output radial dispersing lamp using a solid state light...

Illumination – Plural light sources – Particular wavelength

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S293000, C362S345000, C362S246000, C362S355000

Reexamination Certificate

active

06350041

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to lamps and more particularly to lamps using solid state devices as a light source.
2. Description of the Related Art
Conventional tungsten based lamps and indicator lights convert electrical current to light by applying a current to a filament, which causes it to glow. The filament is commonly suspended near the center of a glass bulb between two rigid current leads, which allows for a radial distribution of the light that is particularly useful for room illumination. The surface of the bulb can also be frosted to cause additional scattering of the light. The life-span of filament based lights is relatively short and is usually limited by the life-span of the filament or of the glass bulb. In addition, the filament is usually suspended close enough to the bulb surface that heat from the filament can cause the bulb to become very hot, such that it is painful to the touch or presents a danger of burning objects that come in contact with it.
Light emitting diodes (LEDs) are an important class of solid state devices that also convert electric energy to light. They generally comprise an active layer of semiconductor material sandwiched between two oppositely doped layers. When a bias is applied across the doped layers, holes and electrons are injected into the active layer where they recombine to generate light. Light is emitted omnidirectionally from the active layer and from all surfaces of the LED.
Most conventional LEDs are less efficient at converting current to light than filament lights, but recent advances in nitride based LEDs have resulted in highly efficient blue and green light sources. The efficiency of these LEDs has already surpassed that of filament based light sources, providing a light with equal or greater brightness in relation to its input power.
One disadvantage of conventional LEDs used for lighting applications is that they cannot generate white light from their active layers. One way to produce white light from conventional LEDs is to combine different colors from different LEDs. For example, white light can be produced by combining the light from red, green and blue LEDs or blue and yellow LEDs. One disadvantage of this approach is that it requires the use of multiple LEDs to produce a single color of light, increasing the overall cost and complexity. In addition, different colors of light are often generated from different types of LEDs and combining different LED types on one device can require complex fabrication. The resulting devices can also require complicated control electronics, since the different diode types can require different control voltages. The long term wavelength and stability is also affected by the different aging behaviors of the different LEDs and the miniaturization of the multi-LEDs is limited.
More recently, the light from a single blue emitting LED has been converted to white light by surrounding the LED with a yellow phosphor, polymer or dye. [See Nichia Corp. white LED, Part No. NSPW300BS, NSPW312BS, etc.; See also U.S. Pat. No. 5,959,316 to Hayden, “Multiple Encapsulation of Phosphor-LED Devices”]. The surrounding material “downconverts” the wavelength of at least some of the LED light, changing its color. For example, if a nitride based blue emitting LED is surrounded by a yellow phosphor, some of the blue light will pass through the phosphor without being changed while the remaining light will be downconverted to yellow. The LED will emit both blue and yellow light, which combines to provide a white light.
However, conventional blue LEDs are too dim for many lighting applications currently using filament based lamps or indicators, and when used to produce white light, some of the emitted light can be absorbed by the downconverting material. For blue LEDs to emit an output light flux sufficient for room illumination, the current applied to the LED must be increased. LEDs commonly operate from a current of 20-60 mAmps, which must be increased to greater than 1 Amp for the LED to illuminate a room. At this current level, LEDs become very hot and can cause damage to other objects and present a danger of fire or injury. The heat can also damage the LED chip itself, or degrade nearby downconverting media such as phosphors, fluorescent polymers, or fluorescent dyes. This can reduce the LED's downconverting ability and decrease its useful lifetime.
Another disadvantage of most conventional LEDs is that they are seated in a “metal cup”, with the n-type layer typically at the bottom of the cup and the p-type surface directed up, with the entire device encased in a clear epoxy. When a blue emitting LED is used for generating white light, it is surrounded by a downconverting material before being encased in the clear epoxy. The cup has two conductive paths to apply a bias across the contacts on the p and n-type surfaces, which causes the LED to emit light. The cup also reflects light emitted from the LED's bottom n-type or side surfaces, back in the direction of the p-type upper surface where it adds to the light emitted from the LED. However, this reflection also causes the light source to be highly directional, so that it is brightest when viewed from directly above the LEDs emitting surface. Furthermore, this conventional LED emits light that appears a different color when viewed from different angles. This is due to incomplete mixing and randomization of the light rays of different colors. This type of light is not useful for room illumination or other applications requiring a dispersed light source or uniform color illumination.
To overcome this limitation, various LED lamps have been developed which use multiple directional LEDs arranged to provide a radial type light source. [See U.S. Pat. No. 5,688,042 to Abolfazl et al., U.S. Pat. No. 5,561,346 to Byrne, U.S. Pat. No. 5,850,126 to Kanbar, and U.S. Pat. No. 4,727,289 to Uchida]. However, because these lamps rely on multiple LEDs, their cost and complexity is increased. Also, they can only provide one pattern for dispersing the light. U.S. Pat. No. 5,931,570 to Yamura discloses a light emitting diode lamp in which the LED is embedded in one end of an epoxy bulb shaped body with the LED leads extending from the bulb end. The body also has a convex top that is frosted to disperse light from the LED. One disadvantage of this LED lamp is that it is not capable of producing white light without being combined with additional LEDs of different colors. In addition, if current were supplied to the LED for room illumination, the LED would become dangerously hot and could be damaged. Also, the lamp can only diffuse the light in one pattern that is hemispheric at best. Very little light is visible if the lamp is viewed from the its back side.
Solid state semiconductor lasers convert electrical energy to light in much the same way as LEDs. They are structurally similar to LEDs but include mirrors on two opposing surfaces, one of which is partially transmissive. In the case or edge emitting lasers, the mirrors are on the side surfaces; the mirrors provide optical feedback so that stimulated emission can occur. This stimulated emission provides a highly collimated/coherent light source. A vertical cavity laser works much the same as an edge emitting laser but the mirrors are on the top and the bottom. It provides a similar collimated output from the its top surface.
Solid state lasers can be more efficient than LEDs at converting electrical current to light, but their coherent light output is not useful for lamps because it only illuminates a small area. Also, they cannot efficiently produce green or blue light and their relatively small beam areas makes it impractical to combine the output of multiple different colored lasers.
SUMMARY OF THE INVENTION
The present invention provides a new solid state lamp that can disperse light in many patterns, but is particularly applicable to a radial dispersion of white light that is useful for room illumination. The new lamp consists of a separat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High output radial dispersing lamp using a solid state light... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High output radial dispersing lamp using a solid state light..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High output radial dispersing lamp using a solid state light... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2956734

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.