Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
1999-11-30
2002-08-27
Delcotto, Gregory (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C510S123000, C510S127000, C510S150000, C510S152000, C510S153000, C510S155000, C510S156000, C510S446000, C510S447000, C510S450000, C510S451000
Reexamination Certificate
active
06440908
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to bar compositions comprising Borax as water structurant, particularly toilet soaps made by milling, plodding and stamping, wherein the water content of the said bars can be significantly increased and retained in the bar, without introducing process related problems and while maintaining good user attributes (e.g., hardness, rate of wear, lather, mush etc.). Thus, these high moisture retaining bar compositions containing Borax enable significant cost savings because of the replacement of total fatty matter (TFM) with water.
BACKGROUND OF THE INVENTION
Conventional toilet soaps are normally composed of predominantly soap (e.g., >70% TFM), 10-13% water and the usual additives (e.g., soda, salt, dyes and perfumes). These bars are typically produced by mixing soap and/or other synthetic surfactants with useful additives, followed by milling, plodding and stamping.
The subject invention is concerned with high moisture containing, low cost Borax soap bars, in which soap constitutes the majority if not all of the surfactant system, although it will be understood that any surfactant system may be used in place of soap. Such bars may also comprise one or more filler materials such as, for example, talc.
In low cost toilet soaps, TFM is generally the most expensive ingredient. Since the level of TFM needed for acceptable detergency is much lower than what is used in conventional toilet soaps, it is desirable to replace TFM with water, air or cheaper fillers, while retaining processability and good bar properties.
As noted, one plausible route to reducing cost is to replace TFM with water. Typically, however, incorporating higher levels of water (e.g., ≧15% and particularly ≧20%) introduces many process and product related problems. Process related problems include production of soft soap masses that are difficult to mill, plod and stamp. Further, even if one were to succeed in avoiding process related problems, high levels of water are difficult to retain in the bar due to enhanced water activity, indicating free water that will be lost, bringing the equilibrium moisture level down to same level as in conventional soaps. Thus, significant losses of moisture from the bars leads to product related problems such as volume shrinkage, cracking and high rates of wear. Accordingly, moisture retention in a high moisture containing toilet bar requires water to be immobilized, which is difficult to achieve under low cost scenario. For this reason, soap bars sold in many developing countries typically contain only 12-13% moisture.
Unexpectedly, applicants have now discovered that by using required amounts of borate compounds (e.g., Borax, calcium borate, calcium-magnesium borate, sodium calcium borate) and/or boric acid (“puffed” Borax as described in U.S. Pat. No. 3,708,425 is generally not the type of boron compound contemplated for use in the bars of the subject invention) as water structurant/filler, it is possible to not only incorporate but also retain much higher amounts of water than previously possible, while maintaining good processability and good bar properties.
The use of borate compounds or boric acid in personal care products generally is not new. As described in a Service Bulletin from Borax Company, borates have been used in many personal care products including soaps (see Section 2.2 of bulletin).
When previously used with soaps, however, Borax has been used as a soluble scrubber in powdered hand soap compositions of the type used to clean medium to heavy soils found in industrial operations; or in liquid soaps (page 5 of Bulletin, first full paragraph).
Borates were also used in the production of laundry soap chips (discontinued in 1960's) or as a constituent of a multi-component enzyme stabilization system. Two examples of borate used as part of an enzyme stabilization system are GB 2,186,833 (Unilever) and WO 98/54285 (Procter & Gamble).
However, both these examples contain enzymes which are undesirable for personal wash applications (bars of the subject invention contain no enzymes). Further, without fillers (e.g., talc), these compositions are said to be soft and doughy (see page 16, lines 12-14 of WO 98/54285) and, even with fillers, applicants have found these compositions to be much softer compared to those of the subject invention (e.g., 8 or below, preferably below 7, more preferably below 6).
Further, these bars of the art require cooling tunnels to achieve even the levels of hardness they possess, which increases the cost of their production. The subject invention uses no such cooling tunnels to achieve hardness.
U.S. Pat. No. 3,708,425 to Compa et al. teaches a detergent bar containing about 5 to 60% by wt. puffed Borax. This work specifically calls for puffed Borax or other puffed salts to which the user properties of the bar are attributed. The puffed Borax is compositionally different than Borax or other boron-containing compounds of the invention.
U.S. Pat. No. 3,798,181 to Vazquez teaches enzymatic detergent bars (not pure soap bars) containing 10-40% synthetic detergent, 0.5-5% enzymes, 5-40% binder (e.g., to help retain water), 20-60% inorganic builder and 12-25% water. Borax may be used as possible inorganic builder. The bar is a detergent bar which contains enzymes unlike bars of the invention which contain no enzymes.
Finally, none of the prior art teaches Borax as a water structurant which enables not only the incorporation but even the retention of high amounts of water in the bar.
BRIEF SUMMARY OF THE INVENTION
The present invention relates to personal wash bar compositions containing surfactant (preferably, at least 30% of the surfactant system is anhydrous soap); borate compound, greater than 0.1 to 25%, preferably 0.5 to 20%, more preferably 1 to 18%, preferably not including puffed Borax (composition may comprise lower levels of 2%, 3% or 4% Borax as well); water, at least about 20 to 60%, more preferably 20 to 50%, more preferably 24 to 40%, most preferably 24 to 35%; wherein the borate compound, preferably without any other binder, is structuring water at high levels to provide bar with hardness (expressed as penetration value) of less than or equal to 8 (measured using penetrometer) more preferably less than or equal to 7, more preferably 4-6 and wherein said bars are made by conventional milling, plodding and stamping.
More specifically, the invention comprises an enzyme-free personal wash bar composition comprising:
(a) 30% to 70%, preferably 40% to 60% by wt. of a surfactant selected from the group consisting of fatty acid soap, anionic surfactant other than soap, amphoteric surfactants, nonionic surfactant and mixtures thereof;
(b) greater than 0.1% to 25% by wt. of a borate compound (e.g., Borax, calcium borate, sodium calcium borate, calcium magnesium borate, boric acid, etc.);
(c) about 20% to 60% by wt. water;
wherein said bar has hardness expressed as penetration value of less than or equal to 8 as measured by penetrometer; and
wherein said bar is made using a step in which ingredients used to form said bar are mixed, milled, plodded and stamped.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to high moisture containing bars, preferably bar soaps containing 30% to 100% of surfactant system of fatty acid soaps and made by conventional milling, plodding and stamping route. Generally, it is difficult to introduce let alone retain, large amounts of water into soap bars (e.g., moisture levels greater than 20% to 60%, preferably 20% to 50%, more preferably 24% to 40%, most preferably 24% to 35%) without introducing process and product related problems.
Unexpectedly, applicants have now discovered that borate compounds (including boric acid) can be used to structure water, thereby allowing the incorporation as well as retention of large amounts of water in the bar (in place of, for example, more expensive fatty acid soap) and without need of costly structurants or binders. Thus, the borate compound or mixture of compounds allows production of bars having h
Delcotto Gregory
Koatx Ronald A.
Unilever Home & Personal Care USA , division of Conopco, Inc.
LandOfFree
High moisture retaining bars compositions comprising borax... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High moisture retaining bars compositions comprising borax..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High moisture retaining bars compositions comprising borax... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2911877