Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...
Reexamination Certificate
2002-08-02
2003-11-11
Yoon, Tae H. (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Processes of preparing a desired or intentional composition...
C523S210000, C523S212000, C524S492000, C528S391000
Reexamination Certificate
active
06646027
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is directed to glass reinforced thermoplastic polyethersulfone resins that contain uniformly dispersed glass fiber. The polyethersulfone resin glass blend has high modulus and improved impact strength.
DESCRIPTION OF THE RELATED ART
Fibrous glass is incorporated with a thermoplastic polymer as an aid to improve mechanical properties. In the manufacture of the fibrous glass, filaments are first formed from molten glass through the use of various processes. The filaments are coated and then gathered into a bundle known as a strand. In order to bind the filaments into a strand and so that the strand can be easily handled, a binder or binding agent is applied to the glass filaments. Subsequently, the strand can be chopped into various lengths as desired. These are called chopped strands. Some of these binding agents are polymers such as polyvinyl acetate, particular polyester resins, starch, acrylic resins, melamine, polyvinyl chloride, polyethylene oxide, polyurethane, polyepoxide, or polyvinyl alcohol. The glass fibers are also treated with coupling agents, often functionalized silane compounds, to improve adhesion of the fiber to the matrix resin.
For thermoplastic polyethersulfones, the fibrous glass enhances the mechanical properties of the resin. Usually, the glass coatings along with silane coupling agents are designed to give good adhesion of the glass to resin. This adhesion gives rise to improved strength and mechanical properties. Unfortunately the addition of such fiber glass can substantially lower the impact strength of a polysulfone resin as measured by notched, unnotched, reversed notched Izod or biaxial impact. Flexural and tensile elongation are also significantly reduced. Thus there exists a need for polyether sulfone resin glass fiber blends that have high modulus and good impact strength.
Improved impact in glass filled resins has been achieved by addition of rubbery modifiers. But adding another component to the blend adds complication and results in an undesirable reduction of modulus. Additionally most rubbery modifiers cannot survive the high processing temperatures needed to mold polysulfone thermoplastics.
Another traditional method to improve the impact of glass filled thermoplastics is to add coupling agents to the mixture to improve glass fiber resin bonding. This is often accomplished by modification of the glass fiber surface to bond more strongly to the resin to give better mechanical properties. In almost every glass filled thermoplastic resin improved impact strength and high modulus are achieved thorough modification of the fiber coating to improve the bond between the glass and resin. The only exception to this is the use of a non bonding glass in polycarbonate resins and certain blends where polycarbonate resin is the major component, for example in U.S. Pat. Nos. 6,060,583 and 5,384,411. Improved impact in glass filled polymers through the use of a coating that does not bond well to the matrix has not been observed in any other resins until now.
This invention marks the time polyolefin coated wax fiber glass has been seen to improve properties of a polyethersulfone and surprisingly it is only effective in specific types of polyethersulfone resins that have predominately biphenol derived linkages. This is the first time that this improved impact behavior has been seen in a non-polycarbonate based resin.
BRIEF SUMMARY OF THE INVENTION
In accordance with the present invention, thermoplastic resin compositions comprise a polyethersulfone resin and glass fibers which have been treated with a coating agent comprising a polyolefin wax and optionally a coupling agent comprising a functionalized silane binding agent.
The thermoplastic resin compositions are useful for processing by injection molding, extrusion and blow molding, and exhibit improved properties such as increased Izod impact strength, increased biaxial impact energy, and increased ductility versus blends made with standard glass fibers giving good adhesion to the matrix.
DETAILED DESCRIPTION OF THE INVENTION
The glass fibers which are uniformly dispersed in the polyethersulfone resin blend are those that have been treated with a coating agent comprising (i) a polyolefin wax and optionally (ii) a functionalized silane coupling agent.
These polyolefin waxes preferably comprise polyethylene wax or polypropylene wax or copolymers thereof such as polyethylene-propylene wax and polyethylene-butylene wax. A particularly suitable polyolefinic wax is polyethylene wax. These polyolefin waxes are well known to those skilled in the art and are available commercially. The polyolefin waxes are preferably based on olefins having from 2 to 18 carbon atoms, more preferably from 2 to 8 carbon atoms, and most preferably from 2 to 4 carbon atoms. Alpha olefin-ethylene copolymers are also useful as coating waxes. The polyolefin wax may also have a small amount of a polar co-monomer such as an unsaturated carboxylic acid, carboxylic ester or carboxylic acid salt. Such functionality will generally be less than 5%. A slight degree of polarity in the wax can be helpful in emulsifying it so that it can coat the glass fiber as an aqueous emulsion.
The functionalized silanes, such as alkoxy silanes, are preferably selected from the group of aminopropyl triethoxy silane, glycidyl propyl trimethoxy silane, (3,4-epoxycyclohexyl) ethyl trimethoxy silane, mercaptopropyl alkoxy silane, aminoethyl aminopropyl alkoxy silane and ureidoalkyl trimethoxy silanes. Particularly useful are aminopropyl triethoxy silane and glycidyl-propyl trimethoxy silane. Preferred functionality of the functionalized silane is epoxy functionality or amine functionality.
Other materials can also be employed with the glass coating agent so used in this invention and include such materials as anti-static agents, coupling agents, lubricants, wetting agents, etc.
The coating agent preferably comprises at least 50 percent by weight polyolefin wax based on the total weight of the coating agent, for example 50 to 100 percent by weight thereof, preferably from 70 to 95 percent by weight thereof and optional further comprises from 1 to 50 percent by weight functionalized silane based on the total weight of the coating agent, preferably from 1 to 20 percent by weight thereof.
The glass fibers that are employed in the practice of this invention are preferably glass strands that have been treated with a coating agent comprising a polyolefin wax and optionally a functionalized silane.
In preparing the glass fibers, a number of filaments can be formed simultaneously, treated with the coating agent and then bundled into a strand. Alternatively the strand itself may be first formed of filaments and then treated with a coating agent. The coatings are often cured by use of a subsequent heat treatment. The amount of the coating agent employed is generally that amount which is sufficient to bind the glass filaments into a continuous strand. Generally, this may be from 0.1 to 5.0% by weight of the glass fiber. Coatings levels of about 1.0 weight percent based on the weight of the glass filament are preferred. As employed, the glass fibers if in the form of chopped glass strands, may be one-sixteenth to one inch long or less but are preferably one-eighth inch long.
In the practice of this invention, the coated glass fibers, preferably coated, chopped glass strands, may be first blended with the polyethersulfone resin and then fed to an extruder and the extrudate cut into pellets, or they may be separately fed to the feed hopper of an extruder. Generally, in the practice of this invention for preparing pellets of the composition set forth herein, the extruder is maintained at a temperature of approximately 550° F. to 650° F. The pellets so prepared when cutting the extrudate may be one-half inch long or less. Such pellets contain finely divided uniformly dispersed glass fibers in the blend composition comprising polyethersulfone resin. The dispersed glass fibers are reduced in length as a result of the shearing action
General Electric Company
Yoon Tae H.
LandOfFree
High modulus polyether sulfone compositions with improved... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High modulus polyether sulfone compositions with improved..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High modulus polyether sulfone compositions with improved... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3123999