Optical: systems and elements – Polarization without modulation – Polarization using a time invariant electric – magnetic – or...
Reexamination Certificate
1999-01-25
2002-11-26
Shafer, Ricky D. (Department: 2872)
Optical: systems and elements
Polarization without modulation
Polarization using a time invariant electric, magnetic, or...
C359S487030, C359S490020, C359S490020, C359S490020, C359S583000, C359S900000
Reexamination Certificate
active
06487014
ABSTRACT:
FIELD OF INVENTION
This invention relates to an optical device such as an optical switch, optical isolator or optical circulator and, more particularly, to a polarization-independent, high-isolation optical device that uses a novel thin film polarizing beam-splitter.
BACKGROUND OF THE INVENTION
In fiber telecommunications, and in particular in wavelength division multiplexing, there is a need for high performance, low-cost and easily-producible optical switches, isolators and circulators. Optical switches are used to select fiber channels electronically. Optical isolators are commonly used in optical amplifiers that amplify fiber signals without using repeating stations. These optical amplifiers are pumped by diode lasers, which are very sensitive to any light reflected back to their cavities. Optical isolators can be used to isolate any reflected light going back to the lasers.
Recently, optical circulators have become very important in bi-directional fiber communications. In a multi-port circulator, signals go from port
1
to port
2
, port
2
to port
3
, port
3
to port
4
, and so on, in stead of port
1
to port
2
and port
2
to port
1
. For example, in Bragg grating wavelength division multiplexers (WDM), without using a circulator, the reflected signal would come out from the same port that the incident light goes in; as result, the incident light and the reflected light cannot be physically separated. However, if a three-port circulator is used, the reflected light will come out from a different port. In addition, optical circulators are also used in channel dropping and adding from and to main fiber lines.
Typically, an optical device such as an optical switch, isolator or circulator has a similar structure. It includes a polarization-rotating device sandwiched between two polarizing devices. The first polarizing device is used to separate the incident beam into two orthogonal polarized light beams and the second polarizing device is used to combine the two orthogonal polarized light beams into one output beam. For a polarization dependent optical switch isolator or circulator, only one polarized light is used. The polarization-rotating device normally consists of a reciprocal device or a non-reciprocal device, or the combination thereof.
A typical reciprocal device is a waveplate such as a quarterwave plate or halfwave plate. A quarterwave plate changes a linear polarized light into a circular polarized light if its optical axis is aligned 45° with regard to the polarization of the incident linear polarized beam. A halfwave plate rotates the polarization of a linear polarized light by any angle depending on the alignment of its optical axis with regard to the polarization of the incident beam.
A typical non-reciprocal device is a Faraday rotator. When a magnetic field is applied to the Faraday rotator, it rotates the electric field of a linear polarized light by a certain angle. The rotational angle depends on the property and the length of the Faraday rotator as well as the strength of the magnetic field. The direction of the rotation depends on the direction of the magnetic field. Therefore, the polarization plane of the light beam is rotated in the same direction for light coming from both directions. This is why such a device is called non-reciprocal device.
Normally, such an optical device has several input and output ports. For an optical switch, the output beam is switched between the several output ports electronically. In order to do this, a mechanism is applied to alter the direction of the magnetic field, for example, an electric coil can be used in which the current can be switched on in both directions. For an optical isolator, the light comes in reverse direction is not used and is directed to a port that is different from the incident port. To use as an optical circulator, the signals circulate between all the ports.
Currently, optical switches, isolators and circulators are mainly based on birefringent polarizing devices such as birefringent polarizers, wedge polarizers or walk-off polarizers, for example, U.S. Pat. Nos. 5,446,578 and 5,734,763 by Chang and U.S. Pat. Nos. 5,581,640, 5,566,259, 5,557,692, 5,706,371 by Pan et al. Sometimes absorbing plate polarizers are also used in optical devices which are polarization-dependent.
Although birefringent polarizers have the advantage of having high extinction ratios, there are several disadvantages resulting from their use. First, birefringent polarizers are expensive. Second, these polarizers have birefringent effects that result in polarization mode dispersion. In order to overcome this problem, other birefringent plates or a second identical stage are added to compensate this polarization dispersion. Both approaches require the use of more birefringent plates or polarizers, and this makes it very expensive and very difficult to assemble since the optical axes of all the birefringent elements need to be accurately aligned. Third, the most common configuration in conventional optical isolators or circulators uses walk-off birefringent polarizers to separate ordinary (o) and extra-ordinary (e) rays physically. This separation depends on the refractive index difference between o- and e-rays and the size of the birefringent material. The greater the separation, the easier it is to package and the better the performance. However, since the refractive index differences depend on the available birefringent materials which are limited, so an increase in the separation means an increase in the size of the birefringent plate. As a result, it is more expensive because the greater the size, the more expensive the birefringent materials. Fourth, it is difficult to make an N multi-port optical circulator based on birefringent materials with the number of ports N larger than four.
Conventional thin film polarizing devices such as thin film polarizers or thin film polarizing beam-splitters (PBS), including MacNeille polarizers or thin film cube or plate polarizers, have been proposed for use as polarizing devices in optical switches, isolators and circulators. For example, one example of the optical circulator was described in U.S. Pat. No. 4,272,159 by Matsumoto. The thin film interference polarizers and PBSs consist of multilayers of dielectric films deposited onto glass or other substrates. Such polarizers reflect s-polarized light and transmit p-polarized light and are normally based on the light interference in thin films, sometimes also in combination with other effects.
Although conventional thin film polarizing devices are versatile in terms of design and are not limited by size and are easier to make and hence less expensive, one of their biggest disadvantages is the low extinction ratio (less than 30 dB isolation), especially in the reflected beams. In addition, the bandwidth of the thin film cube or plate polarizers is very small. Another disadvantage is that their angular field is very small, and they therefore require well collimated light beams. As a result, any optical device based on these conventional thin film polarizing devices will suffer the same low extinction ratio problem. In addition, they are more difficult to package because of the small angular fields. Such optical switches isolators and circulators can only be used in the areas where high extinction ratios are not required. For high performance devices, such as those used in fiber communications, the market is dominated by the birefringent materials.
The most commonly used thin film polarizers are the MacNeille polarizer which was invented by MacNeille in 1946. It is based on the Brewster angle phenomenon and light interference in thin films. When light is incident at the interface between a high and low refractive index materials, if the incident angle is equal to the Brewster angle, all the p-polarized light is transmitted and s-polarized light is partially reflected. In order to increase the reflection for s-polarized light, a multilayer interference coating consisting of the high and low index materials are used. The coating i
(Marks & Clerk)
National Research Council of Canada
Shafer Ricky D.
LandOfFree
High isolation optical switch, isolator or circulator having... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High isolation optical switch, isolator or circulator having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High isolation optical switch, isolator or circulator having... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2916077