Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator
Reexamination Certificate
1998-07-22
2002-12-31
Evanisko, George R. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical energy applicator
Reexamination Certificate
active
06501994
ABSTRACT:
BACKGROUND OF THE ART
FIELD OF THE INVENTION
The present invention relates generally to leads for conducting electrical signals to and from the heart. More particularly, it pertains to electrode tips for delivering electrical charges to the heart, and to tips which tend to reduce power consumption from cells without reducing the effective level of each pace.
BACKGROUND OF THE INVENTION
Leads implanted in the body for electrical cardioversion or pacing of the heart are generally known in the art. In particular, electrically transmissive leads may be implanted in or about the heart to reverse (i.e., defibrillate or cardiovert) certain life threatening arrhythmias or to stimulate contraction (pacing) of the heart. Electrical energy is applied to the heart via the leads to return the heart to normal rhythm. Leads have also been used to sense conditions, materials or events (generally referred to as “sense” or “sensing”) in the body, such as in the atrium or ventricle of the heart and to deliver pacing pulses to the atrium or ventricle. Tachy leads generally can at least sense, pace, and deliver defibrillation shocks. Brady leads can at least perform the combination functions of pacing and sensing the heart. One of the available functions of the pacemaker or the automatic implantable cardioverter defibrillator (AICD) is to receive signals from a lead and interpret signals. In response to these signals, the pacemaker can decide to pace or not pace. The AICD can decide to pace or not pace, and shock or not shock. In response to a sensed bradycardia or tachycardia condition, a pulse generator produces pacing or defibrillation pulses to correct the condition. The same lead used to sense the condition is sometimes also used in the process of delivering a corrective pulse or signal from the pulse generator of the pacemaker.
Sick sinus syndrome and symptomatic AV (atrial-ventricular) block constitute two of the major reasons for insertion of cardiac pacemakers today. Cardiac pacing may be performed by the transvenous method or by leads implanted directly onto the ventricular epicardium. Most commonly, permanent transvenous pacing is performed using a lead positioned within one or more chambers of the heart. A lead, sometimes referred to as a catheter, may be positioned in the right ventricle or in the right atrium through a subclavian vein or other vascular port, and lead terminal pins are attached to a pacemaker which is implanted subcutaneously. The lead may also be positioned in both chambers, depending on the lead, as when a lead passes through the atrium to the ventricle. Sense electrodes may be positioned within the atrium or the ventricle of the heart as appropriate for the particular condition or the choice of the medical practitioner.
Pacemaker leads represent the electrical link between the pulse generator and the heart tissue which is to be excited. These pacemaker leads include single or multiconductor coils of insulated wire having an insulating sheath. The coils provide a cylindrical envelope or tube, many times referred to as a lumen, which provides a space into which a stiffening stylet can be inserted. The conductive coil is connected to an electrode in an electrode assembly at a distal end of a pacing lead. Typically, a terminal member is molded within a flexure sleeve at the proximal end of the pacing lead and connected to the proximal end of the conductive coil.
After the electrode assembly is positioned at a desired location within the heart, it is desirable to provide some method for securing the electrode assembly at that location. Mechanical fixation devices are used to firmly anchor the electrodes in the heart. One type of mechanical fixation device used is a corkscrew, or a helix electrode connector. During placement of the lead, the tip of the lead travels intravenously through veins and the heart. While traveling through the veins, the helix electrode connector at the tip of the lead may snag or attach to the side wall of the vein. Since this is highly undesirable as it may cause damage or other complications to a patient, retractable helixes are one of the optional constructions which have been provided for leads. In addition, temporary caps over the helix (such as an aqueous soluble cap, particularly a water soluble, innocuous organic material such as a sugar, starch or other biologically inert, or digestible material such as sugars, starches and the like (e.g., mannitol, sorbitol) may be formed over the helix or tip. Preferably these materials are at least soluble or dispersible and preferably are inert or even digestible.
When using a retractable helix, the helix is extended and screwed into the heart muscle by applying a torque to the other end of the conductor without use of any further auxiliary device or with a special fixation stylet. A fixed or non-retractable helix electrode connector needs only to be positioned and secured to the heart muscle by the application of torque. If a soluble/dispersible cap is present on the helix, the cap must be given sufficient time to dissolve or disperse before complete securement of the helix electrode connector is attempted. A lead must be capable of being firmly secured into the wall of the cardiac tissue to prevent dislodgement therefrom, while avoiding perforation of the electrode completely through the cardiac tissue.
The pulse generator circuitry and power supply work in concert with the electrodes as a system which provides electrical pulses to the heart tissue. A low impedance electrode design may increase power delivery to the heart tissue, but at the same time, this higher energy usage results in shorter battery life. Shorter battery life is undesirable, since it increases the average number of surgical procedures to perform battery replacement for a patient.
There is a need for a body-implantable lead that has a helix for fixation to the wall of the atrium or ventricle of the heart. A separate desirable feature in body-implantable leads is for a lead having an electrode for positioning within the atrium or ventricle that allows for tissue ingrowth. Tissue ingrowth further enhances the electrical performance of the lead. The lead and electrode are further stabilized within the heart as a result of tissue ingrowth. Furthermore, there is a need for a relatively high pacing impedance electrode design which offers reasonable average voltage threshold with sufficient signal amplitude so that the pacing function would be effectively provided with reduced energy utilization and consequently extend battery life.
SUMMARY OF THE INVENTION
According to the present invention, there is provided a body-implantable lead assembly comprising a lead, one end of the lead being adapted to be connected to electrical supply for providing or receiving electrical pulses. The other end of the lead comprises a distal tip which is adapted to be connected to tissue of a living body. The lead is characterized by having either a) a porous electrode at the base of the helix and/or b) an insulating coating over a portion of the helix so that the impedance is increased for the helix as compared to a helix of the same size and materials without an insulating coating. The lead also has an increased impedance or high impedance which can act to extend the life of the battery. The high or at least the increased impedance may be effected in any of a number of ways, including, but not limited to one or more of the following structures: 1) a fully insulated tissue-engaging tip with an electrode at the base of the insulated tip, 2) a partially insulated engaging tip (only a portion of the surface area of the engaging tip being insulated), 3) a mesh or screen of material at the distal end of the lead, at the base of an extended engaging tip (whether a fixed or retractable tip), 4) the selection of materials in the composition of the mesh and/or tip which provide higher impedance, 5) the partial insulative coating of a mesh or screen to increase its pacing impedance, and 6) combinations of any of these features. There may be various constructions to
Bartig Jeffrey T.
Cole Mary Lee
Goebel Gary W
Heil, Jr. Ronald W.
Heitkamp Douglas A
Cardiac Pacemakers Inc.
Evanisko George R.
Schwegman Lundberg Woessner & Kluth P.A.
LandOfFree
High impedance electrode tip does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High impedance electrode tip, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High impedance electrode tip will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2934906