High frequency signal peak detector

Miscellaneous active electrical nonlinear devices – circuits – and – Specific signal discriminating without subsequent control – By amplitude

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C327S062000

Reexamination Certificate

active

06836156

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
This invention relate generally to communication systems and more particularly to transmit power control within such communication systems.
2. Description of Related Art
Communication systems are known to support wireless and wire lined communications between wireless and/or wire lined communication devices. Such communication systems range from national and/or international cellular telephone systems to the Internet to point-to-point in-home wireless networks. Each type of communication system is constructed, and hence operates, in accordance with one or more communication standards. For instance, wireless communication systems may operate in accordance with one or more standards including, but not limited to, IEEE 802.11, Bluetooth, advanced mobile phone services (AMPS), digital AMPS, global system for mobile communications (GSM), code division multiple access (CDMA), local multi-point distribution systems (LMDS), multi-channel-multi-point distribution systems (MMDS), and/or variations thereof.
Depending on the type of wireless communication system, a wireless communication device, such as a cellular telephone, two-way radio, personal digital assistant (PDA), personal computer (PC), laptop computer, home entertainment equipment, et cetera communicates directly or indirectly with other wireless communication devices. For direct communications (also known as point-to-point communications), the participating wireless communication devices tune their receivers and transmitters to the same channel or channels (e.g., one of the plurality of radio frequency (RF) carriers of the wireless communication system) and communicate over that channel(s). For indirect wireless communications, each wireless communication device communicates directly with an associated base station (e.g., for cellular services) and/or an associated access point (e.g., for an in-home or in-building wireless network) via an assigned channel. To complete a communication connection between the wireless communication devices, the associated base stations and/or associated access points communicate with each other directly, via a system controller, via the public switch telephone network, via the Internet, and/or via some other wide area network.
For each wireless communication device to participate in wireless communications, it includes a built-in radio transceiver (i.e., receiver and transmitter) or is coupled to an associated radio transceiver (e.g., a station for in-home and/or in-building wireless communication networks, RF modem, etc.). As is also known, the receiver is coupled to the antenna and includes a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage. The low noise amplifier receives inbound RF signals via the antenna and amplifies then. The one or more intermediate frequency stages mix the amplified RF signals with one or more local oscillations to convert the amplified RF signal into baseband signals or intermediate frequency (IF) signals. The filtering stage filters the baseband signals or the IF signals to attenuate unwanted out of band signals to produce filtered signals. The data recovery stage recovers raw data from the filtered signals in accordance with the particular wireless communication standard.
As is known, the transmitter includes a data modulation stage, one or more intermediate frequency stages, and a power amplifier. The data modulation stage converts raw data into baseband signals in accordance with a particular wireless communication standard. The one or more intermediate frequency stages mix the baseband signals with one or more local oscillations to produce RF signals. The power amplifier amplifies the RF signals prior to transmission via an antenna.
The level at which the power amplifier amplifies the RF signals may be a fixed level or varied. In many applications, it is desirable to be able to adjust the transmit power level of the power amplifier to conserve power when less power will suffice. Typically, a lower transmit power may be used when the receiver that receives the signals of the transmitter receives the signals with a high received signal strength indication. In this instance, based on an indication of the peak value of the signal, the transmitter may reduce its transmit power level. To facilitate the transmit power level adjustment, the transmitter includes a peak detection circuit.
While there are many ways in which a peak detection circuit may be implemented, when the peak detection circuit is implemented on an integrated circuit, there is a further need for simplification of circuitry with improved performance. Further, measuring the peak detection of a single-ended signal is done using one type of peak detection circuit, while measuring the peak of a differential signal is done using a different type of peak detection circuit. Still further, as the rate of the signal increases (e.g., into the Giga Hertz range), peak detection circuits become less accurate due to the speed and/or become more complex.
Therefore, a need exists for an accurate, flexible (e.g., handles single-ended and differential signals equally well), and compact peak detection circuit.
BRIEF SUMMARY OF THE INVENTION
The high frequency signal peak detection circuit of the present invention substantially meets these needs and others. In one embodiment, a signal power detector includes an input coupling circuit and a rectifying operational amplifier. The input coupling circuit is operably coupled to receive a signal and to convert the signal into a first input and a rectifying input. The rectifying operational amplifier is operably coupled to receive the first input and the rectifying input and to produce therefrom a rectified output signal that represents a peak of the received signal. Such a high frequency signal peak detection circuit provides an accurate, flexible, and compact peak detect circuit.


REFERENCES:
patent: 5954756 (1999-09-01), Hemming et al.
patent: 5969545 (1999-10-01), Assadian et al.
patent: 6067327 (2000-05-01), Creigh et al.
patent: 6208173 (2001-03-01), Redman-White
patent: 6671075 (2003-12-01), Mizunaga

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High frequency signal peak detector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High frequency signal peak detector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High frequency signal peak detector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3337085

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.