High frequency, high efficiency quick restart lighting system

Electric lamp and discharge devices: systems – Periodic switch in the supply circuit – Impedance or current regulator in the supply circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S291000, C315S307000, C315S308000

Reexamination Certificate

active

06555971

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a system for quick restart of lamps which is a high frequency, high efficiency system which includes ballast features and utilizes a three stage power factor correction microchip in a unique circuit to achieve a diverse, superior device.
2. Information Disclosure Statement
The following patents represent the state of the art in ballast and lamp lighting systems:
U.S. Pat. No. 5,929,563 to Andreas Genz describes a metal-halide high-pressure discharge lamp with a discharge vessel and two electrodes which has an inside discharge vessel and ionizable filling, which contains yttrium (Y) in addition to inert gas, mercury, halogen, thallium (TI), hafnium (Hf), whereby hafnium can be replaced wholly or partially by zirconium (Zr), dysprosium (Dy) and/or gadolinium (Gd) as well as, optionally, cesium (Cs). Preferably, the previously conventional quantity of the rare-earth metal is partially replaced by a molar equivalent quantity of yttrium. With this filling system, a relatively small tendency toward devitrification is obtained even with high specific arc powers of more than 120 W per mm of arc length or with high wall loads. Thus, the filling quantity of cesium can be clearly reduced relative to a comparable filling without yttrium, whereby an increase in the light flux and particularly in the brightness can be achieved.
U.S. Pat. No. 5,900,701 to Hansraj Guhilot et al. describes a lighting inverter which provides voltage and current to a gas discharge lamp in general and a metal halide lamp in particular with a novel power factor controller. The power factor controller step down converter having the device stresses of a buck converter, continuous current at its input like a CUK converter, a high power factor, low input current distortion and high efficiency. The inverter consists of two cyclically rotated CUK switching cells connected in a half bridge configuration and operated alternately. The inverter is further optimized by using integrated magnetics and a shared energy transfer capacitor. The AC voltage output from the inverter is regulated by varying its frequency. A ballast filter is coupled to the regulated output of the inverter. The ballast filter is formed by a series circuit of a ballast capacitor and a ballast inductor. The lamp is preferably connected across the inductor to minimize the acoustic arc resonance. The values of the capacitor and the inductor are chosen so as to satisfy the firing requirements of the HID lamps. A plurality of lamps are connected by connecting the multiple lamps with the ballast filters to the secondary of the inverter transformer. Almost unity power factor is maintained at the line input as well as the lamp output.
U.S. Pat. No. 5,323,090 to Guy J. Lestician is directed to an electronic ballast system including one or more gas discharge lamps which have two unconnected single electrodes each. The system is comprised of a housing unit with electronic circuitry and related components and the lamps. The system accepts a.c. power and rectifies it into various low d.c. voltages to power the electronic circuitry, and to one or more high d.c. voltages to supply power for the lamps. Both the low d.c. voltages and the high d.c. voltages can be supplied directly, eliminating the need to rectify a.c. power. The device switches a d.c. voltage such that a high frequency signal is generated. Because of the choice of output transformers matched to the high frequency (about 38 kHz) and the ability to change frequency slightly to achieve proper current, the device can accept various lamp sizes without modification. The ballast can also dim the lamps by increasing the frequency. The device can be remotely controlled. Because no filaments are used, lamp life is greatly extended.
U.S. Pat. No. 5,287,040 to Guy J. Lestician is directed to an electronic ballast device for the control of gas discharge lamps. The device is comprised of a housing unit with electronic circuitry and related components. The device accepts a.c. power and rectifies it into various low d.c. voltages to power the electronic circuitry, and to one or more high d.c. voltages to supply power for the lamps. Both the low d.c. voltages and the high d.c. voltages can be supplied directly, eliminating the need to rectify a.c. power. The device switches a d.c. voltage such that a high frequency signal is generated. Because of the choice of output transformers matched to the high frequency (about 38 kHz) and the ability to change frequency slightly to achieve proper current, the device can accept various lamp sizes without modification. The ballast can also dim the lamps by increasing the frequency. The device can be remotely controlled.
U.S. Pat. No. 5,105,127 to Georges Lavaud et al. describes a dimming device, with a brightness dimming ratio of 1 to 1000, for a fluorescent lamp used for the backlighting of a liquid crystal screen which comprises a periodic signal generator for delivering rectangular pulses with an adjustable duty cycle. The pulses are synchronized with the image synchronizing signal of the liquid crystal screen. An alternating voltage generator provides power to the lamp only during the pulses. The decrease in tube efficiency for very short pulses allows the required dimming intensity to be achieved without image flickering.
U.S. Pat. No. 5,039,920 to Jerome Zonis describes a gas-filled tube which is operated by application of a powered electrical signal which stimulates the tube at or near its maximum efficiency region for lumens/watt output; the signal may generally stimulate the tube at a frequency between about 20 KHz and about 100 KHz with an on-to-off duty cycle of greater than one-to-one. Without limiting the generality of the invention, formation of the disclosed powered electrical signal is performed using an electrical circuit comprising a feedback transformer having primary and secondary coils, a feedback coil, and a bias coil, operatively connected to a feedback transistor and to a plurality of gas-filled tubes connected in parallel.
U.S. Pat. No. 4,937,470 to Kenneth T. Zeiler describes a gate driver circuit which is provided for push-pull power transistors. Inverse square wave signals are provided to each of the driver circuits for activating the power transistors. The combination of an inductor and diodes provides a delay for activating the corresponding power transistor at a positive transition of the control signal, but do not have a significant delay at the negative transition. This provides protection to prevent the power transistors from being activated concurrently while having lower power loss at high drive frequencies. The control terminal for each power transistor is connected to a voltage clamping circuit to prevent the negative transition from exceeding a predetermined limit.
U.S. Pat. No. 4,876,485 to Leslie Z. Fox describes an improved ballast that operates an ionic conduction lamp such as a conventional phosphor coated fluorescent lamp. The ballast comprises an ac/dc converter that converts an a-c power signal to a d-c power signal that drives a transistor tuned-collector oscillator. The oscillator is comprised of a high-frequency wave-shape generator that in combination with a resonant tank circuit produces a high-frequency signal that is equivalent to the resonant ionic frequency of the phosphor. When the lamp is subjected to the high frequency, the phosphor is excited which causes a molecular movement that allows the lamp to fluoresce and emit a fluorescent light. By using this lighting technique, the hot cathode of the lamp, which normally produces a thermionic emission, is used only as a frequency radiator. Therefore, if the cathode were to open, it would have no effect on the operation lamp. Thus, the useful life of the lamp is greatly increased.
U.S. Pat. No. 4,717,863 to Kenneth T. Zeilier describes a ballast circuit which is provided for the start-up and operation of gaseous discharge lamps. A power transformer connected to an inductive/capacitive tank

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High frequency, high efficiency quick restart lighting system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High frequency, high efficiency quick restart lighting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High frequency, high efficiency quick restart lighting system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3089487

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.