High-frequency AC drive for MEM devices

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S290000, C359S238000, C359S298000, C359S231000

Reexamination Certificate

active

06781739

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to optical systems. The present invention relates more particularly to micro electromechanical (MEM) devices that may be used in optical systems.
2. Description of the Background Art
Arrays of light-modulating elements have been applied to communications and display systems. The light-modulating elements may comprise, for example, the GLV™ light modulator available from Silicon Light Machines in Sunnyvale, Calif. For example, the arrays may be used as a micro electromechanical system (MEMS) for use in optical networks. In another application, a two-dimensional projection image may also be formed by using one or more linear arrays of light-modulating elements. In such display systems, the linear array modulates an incident light beam to display pixels along a column (or, alternatively, a row) of the two-dimensional (2D) image. A scanning system is used to move the column across the screen such that each light-modulating element is able to generate a row of the 2D image. In this way, the entire 2D image is displayed.
Publications describing GLV™ light modulator devices and their applications include, among others: “The Grating Light Valve: Revolutionizing Display Technology,” by D. M. Bloom, Projection Displays III Symposium, SPIE Proceedings, Volume 3013, San Jose, Calif., February 1997; “Grating Light Valve Technology: Update and Novel Applications,” by D. T. Amm and R. W. Corrigan of Silicon Light Machines in Sunnyvale, Calif., a paper presented at the Society for Information Display Symposium, May 19, 1998, Anaheim, Calif.; “Optical Performance of the Grating Light Valve Technology,” David T. Amm and Robert W. Corrigan of Silicon Light Machines, a paper presented at Photonics West-Electronics Imaging, 1999; “Calibration of a Scanned Linear Grating Light Valve Projection System,” R. W. Corrigan, D. T. Amm, P. A. Alioshin, B. Staker, D. A. LeHoty, K. P. Gross, and B. R. Lang, a paper presented at the Society for Information Display Symposium, May 18, 1999, San Jose, Calif.; “An Alternative Architecture for High Performance Display,” R. W. Corrigan, B. R. Lang, D. A. LeHoty, and P. A. Alioshin of Silicon Light Machines, a paper presented at the 141st SMPTE Technical Conference and Exhibition, Nov. 20, 1999, New York, N.Y.; “Breakthrough MEMS Component Technology for Optical Networks,” Robert Corrigan, Randy Cook, and Olivier Favotte, Silicon Light Machines—Grating Light Valve Technology Brief, 2001; and U.S. Pat. No. 6,215,579, entitled “Method and Apparatus for Modulating an Incident Light Beam for Forming a Two-Dimensional Image,” and assigned at issuance to Silicon Light Machines. Each of the above-mentioned publications is hereby incorporated by reference in its entirety.
One disadvantageous aspect of using such light modulators and other MEMS technology relates to changes in device performance as a function of time. Whether used in a communication or other system, the response function of a light modulator element and other MEM devices has been observed to change over time. Such time-dependent changes can lead to unpredictable behavior and thus may limit the applications for light modulator elements and other MEM devices.
SUMMARY
One embodiment of the invention pertains to a method for driving a micro electromechanical (MEM) device. The method includes generating a high-frequency AC drive signal that is substantially higher in frequency than a resonance frequency of a movable feature in the MEM device, and modulating the amplitude of the high-frequency AC drive signal. A DC-like displacement of the movable feature in the MEM device is achieved by driving the movable feature using the amplitude modulated high-frequency AC drive signal.
Another embodiment of the invention relates to an apparatus for driving a movable feature in a micro electromechanical (MEM) device to a nearly static displacement level. The apparatus includes a high-frequency signal generator, an amplitude modulator, and a controller. The signal generator generates an AC drive signal that is substantially higher in frequency than a resonance frequency of the movable feature. The amplitude modulator modulates the high-frequency AC drive signal to the appropriate amplitude prior to application of the drive signal to the movable feature in the MEM device. The appropriate amplitude corresponds to a nearly static displacement level and is determined by the controller.
Another embodiment of the invention pertains to a method for driving a micro electromechanical (MEM) device using a square-wave bipolar drive signal. The drive signal is generated such that the transition time between the polarities of the square wave is shorter than the response time of the movable feature of the MEM device. This results in a nearly static displacement of the movable feature.
These and other features of the present invention will be readily apparent to persons of ordinary skill in the art upon reading the entirety of this disclosure, which includes the accompanying drawings and claims.


REFERENCES:
patent: 3813142 (1974-05-01), Buhrer
patent: 5444566 (1995-08-01), Gale et al.
patent: 6215579 (2001-04-01), Bloom et al.
D.M. Bloom, et al. “The Grating Light Valve: revolutionizing display technology” Feb. 1997, 10 sheets, vol. 3013; Projection Displays III Symposium, San Jose, CA.
D.T. Amm, et al. “Grating Light Valve Technology: Update and Novel Applications”, May 19, 1998, pp. 1-4, Silicon Light Machines. Presented at Society for Information Display Symposium, Anaheim, CA.
David T. Amm, et al. “Optical Performance of the Grating Light Valve Technology”, 1999, pp. 1-8, Silicon Light Machines. Presented at Photonics West-Electronics Imaging.
R.W. Corrigan, et al. “An Alternative Architecture for High Performance Display”, Nov. 20, 1999, pp. 1-5, Silicon Light Machines. Presented at SMPTE Technical Conference and Exhibition, New York, NY.
R.W. Corrigan, et al. “Calibration of a Scanned Linear Grating Light Valve Projection System”, May 18, 1999, pp. 1-4, Silicon Light Machines. Presented at Society for Information Display Symposium, San Jose, CA.
Robert Corrigan, et al. “Silicon Light Machines—Grating Light Valve Technology Brief”, Jun. 2001, pp. 1-8; Sunnyvale, California.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High-frequency AC drive for MEM devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High-frequency AC drive for MEM devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-frequency AC drive for MEM devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3294975

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.