High flow bolt for paintball marker

Mechanical guns and projectors – Fluid pressure – With control for discharge of fluid pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06715480

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to pneumatically operated projectile launching devices and more particularly to a bolt for such a projectile launching device including fluid flow passages configured to significantly improve the efficiency of energy transfer from a propellant gas to the projectile.
2. Description of the Related Art
Paintball is a popular recreational activity that may be played in a variety of indoor or outdoor environments. Typically, the object of the game is to capture the flag of an opposing team. Players are eliminated when “marked” by paint from a pneumatically fired paint ball. The ball is designed to rupture and splatter paint on the stricken player. The equipment used to fire the paintballs are referred to as “markers”. Paintball markers launch the paintballs by releasing a burst of gas (typically CO
2
or compressed air) under pressure into a barrel behind the paintball projectile.
The development of paintball markers has been characterized by continuing efforts to improve their ease of use, reliability, accuracy and efficiency. Efficiency as used in the context of this application is intended to describe the quantity of compressed gas required to propel a paintball projectile at a predetermined velocity. The quantity of gas used is primarily a function of the input pressure, which is adjusted by a regulator between the reservoir of compressed gas and the internal mechanisms of the marker. Generally speaking, higher input pressure translates into higher paintball velocity from the marker. The rules of organized paintball games typically restrict the maximum velocity to between 280 and 300 feet per second close, e.g., within 1 to 2 feet of the muzzle of the paintball marker.
Efficiency is important to a paintball player because the power source for the paintball marker is a cartridge or bottle of compressed gas mounted to the marker. Continuing efforts have been made to reduce the size and weight while increasing the capacity of these cartridges or bottles. However, their capacity is inherently limited and a player can quite literally run out of gas. A paintball marker with improved efficiency may permit either reduction in the size and therefore weight of the compressed gas reservoir or permit the firing of more shots from a gas reservoir of the given size, or both.
Most paintball markers share some common components and are similar in some ways to a firearm or airgun. For example, the paintball projectile is fired out of a barrel, which extends from a generally closed breech end to an open muzzle end. The paintball marker typically includes a grip and utilizes a trigger to initiate launching of the paintball projectile. A reservoir or magazine of paintball projectiles is typically mounted above the breech of the paintball marker. Paintballs are typically fed into the breech of the marker by gravity, although other feeding mechanisms are available.
Many paintball markers are semi-automatic, e.g., a new projectile is loaded into firing position automatically, immediately after launch of a preceding paintball. Such paintball markers typically utilize a reciprocating bolt. The bolt serves two primary functions. First, the bolt cycles between a loading position in which the outlet of the projectile magazine is uncovered permitting a paintball to drop into the breech of the paintball marker; and a launch position in which the bolt moves toward the muzzle of the marker, covering the magazine outlet. Second, when in the “launch” position, the bolt re-directs a charge of compressed gas released from a chamber in the marker to propel the paintball out the muzzle end of the barrel toward a target. The expanding gas of the propellant charge transfers energy to the projectile, expelling it from the barrel of the marker. It is the efficiency of this energy transfer that ultimately determines what quantity, i.e., pressure of propellant charge is required to propel a paintball at a given velocity.
There is a need in the art for a paintball marker bolt that maximizes the efficiency of energy transfer from the released gas to a paintball projectile.
SUMMARY OF THE INVENTION
A bolt in accordance with the present invention improves the efficiency of energy transfer from the propellant charge to a paintball projectile in part by reconfiguring the gas flow passages through the bolt to reduce energy loss due to turbulence. The compactness typical of a paintball marker does not permit the propellant charge pass longitudinally from the internal reservoir through the length of the bolt and down the barrel. In a common configuration, the propellant charge enters the bolt generally perpendicular to the bolt/barrel axis through a port or opening in the side of the bolt. The flow direction of the propellant charge must be re-directed from an orientation perpendicular to the barrel to a direction aligned with the barrel.
Typical prior art bolts utilize a right-angle junction defined by the intersection of perpendicular flow passages. Such an abrupt change of direction creates turbulence in the propellant charge and robs it of energy. According to a first embodiment of a first aspect of the present invention, a marker bolt utilizes an angled inlet passage to eliminate the “corner” formed at the intersection of the prior art perpendicular flow passages. This transition passage configuration simultaneously reduces the “dead” volume within the bolt and reduces turbulence in the propellant charge during its change of direction. In combination, the reduced volume and turbulence of the bolt inlet transition passage reduce energy loss during the change of propellant charge direction.
Typical prior art marker bolts use a plurality of circular bores to connect the bolt inlet to the projectile end of the bolt. Such circular passages are easily machined, but make poor use of the available sectional flow area within the bolt. The resulting restricted flow path unnecessarily reduces the mass flow rate of the propulsion charge through the bolt.
According to a first embodiment of a second aspect of the present invention, a high efficiency marker bolt utilizes a plurality of equiangularly spaced, circumferentially extended longitudinal flow passages to connect the bolt inlet to the projectile end of the bolt. The passages are kidney-shaped or eliptical when viewed in section. Such passages dramatically increase the flow area through the bolt. This increased flow area presents less resistance to the propellant charge, permitting a larger quantity of propellant gas to move longitudinally through the bolt per unit of time.
The energy required to expel the paintball from the muzzle of the marker at a given velocity must be derived from the propellant charge. An object of the present invention is to provide a new and improved marker bolt that improves the efficiency of this energy transfer by minimizing the energy lost to turbulence and increasing the flow rate of the propellant charge through the bolt. These objects are achieved, in part by increasing the sectional flow area of the bolt available for longitudinal flow of the propellant charge. Less restricted gas flow permits a larger volume of the propellant charge to act on the projectile in a shorter period of time. This larger volume may in fact have a somewhat slower velocity in the longitudinal flow passages when compared to the restricted flow passages of the prior art. However, the larger volume of propellant charge reaching the projectile can accomplish more useful work, e.g., accelerating the projectile than is possible with the prior art bolt.
According to a first embodiment of a third aspect of the present invention, a high efficiency marker bolt provides a chamber connecting the longitudinal flow passages at the forward or projectile end of the bolt. This chamber serves at least two functions. First, it gives the propellant charge room to accumulate before the paintball begins to move. This room to expand smoothes the flow of the propellant charge through the marker bolt. In contrast, many pri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High flow bolt for paintball marker does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High flow bolt for paintball marker, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High flow bolt for paintball marker will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3220256

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.