High fill-factor microlens array and fabrication method

Optical: systems and elements – Single channel simultaneously to or from plural channels – By surface composed of lenticular elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S455000

Reexamination Certificate

active

06301051

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to integrated optoelectronics in general and more specifically to monolithic microlens arrays for photodetector imagers.
2. Description of the Related Art
Optoelectronic arrays such as photodetector imagers are commonly combined with complementary arrays of microlenses to enhance efficiency by concentrating incident radiation into an active photodetecting region. Various techniques have been employed to fabricate the microlens arrays. In some methods, a microlens array is fabricated separately from the photoelectronic chip then bonded to the chip. This requires that the microlens array be aligned properly with the photoelectronic chip during bonding, and that the alignment be accurately maintained during the life of the device. Because such alignment is difficult in mass-production, monolithic fabrication of microlens arrays integrated with the optoelectronics is preferable.
One conventional method of monolithic fabrication of microlens arrays is described by Zoran D. Popovic, Robert A. Sprague, and G. A. Neville Connell in “Technique for Monolithic Fabrication of Microlens Arrays, ”
Applied Optics
, Vol. 27, No. 7, pp. 1281-84 (April 1988). Briefly, their method consists of four steps: first, aluminum film is deposited on a quartz substrate and patterned with 15 micron circular aperture holes. Second, 30 micron circular pedestals are formed on top of the holes. Next, 25 micron diameter, 12 micron high cylinders of photoresist are developed on top of the pedestals. Finally, heating to 140 degrees centigrade melts the pedestals which then form roughly hemispherical droplets, under the influence of surface tension. The formation of hemispherical droplets is analogous to the familiar way in which rain droplets “bead up” on the hood of freshly waxed automobiles.
The above described fabrication method has several drawbacks. First, it fails to approach a 100 percent fill factor for the surface area. Second, when a non-circular lens base is used, the method produces imperfect lens shapes which deviate from spherical, resulting in broadened focal spots.
A further problem is the sensitivity of the reflow method to process conditions. Interfacial adhesion and wetting of the photoresist over the planarizing material are process dependent, and it is therefore difficult to achieve reproducible results. Photoresist lenses for visible imagers are typically fabricated on an optically transparent planarizing layer or over color filters. The lens, filter and planarizing materials have similar surface energies, which makes controlling the wetting and spreading of the photoresist during reflow difficult to control. A narrow range of process conditions must be maintained for success.
The reflow fabrication method is undesirably limited in its ability to produce “slow” microlenses (with small aperture to focal length ratio). Such microlenses have only slight curvature over their aperture, and it is difficult to accurately produce such a shape, as the surface tension causes the edges to rise and the center to sag. Any such sag introduces significant aberration.
Reworking of imperfect reflow microlenses is expensive as it requires stripping of the lens, the planarization layer and any underlying color filter materials (which are commonly added).
The failure of reflow lenses to achieve high fill factor can be easily understood by reference to FIG.
1
. The figure shows only four pixels, for ease of illustration, although actual image matrices typically would include hundreds, thousands, or even millions of pixels, as is well known. The pixels are typically laid out substantially as shown, in a rectangular or square matrix with rows
10
and columns
12
at right angles. The round regions
14
represent the microlenses, formed by the reflow method, which occupy area within rectangular cells
16
(shown square, within phantom lines
17
). A minimum space
18
is required between the circumference of the microlenses
14
and any adjacent microlenses. If this minimum space is not observed, the lenses
14
will flow together during melting to form larger drops, losing their distinct identities.
In the plan illustrated, it is obvious that each microlens is, in area plan, a round object occupying a square cell. Therefore, even neglecting interlens spacing, full fill-factor can never be achieved, as the area of a circle of diameter d is only &pgr;/4 of the area of the square enclosing the circle. The situation worsens when the requisite inter-lens spacing is considered; and the fill-factor degrades to an abysmal level as the lenslets are scaled down below ten microns, as the interlens spacing is not correspondingly scaleable: a minimum spacing is required between the lenses to prevent contact of photoresist islands during reflow, and this spacing is generally limited by the photolithographic resolution. With reflow lenses, a typical fill factor of less than 65 percent is achievable for 5 micron square pixel sizes with 1 micron separation.
To increase fill factor, it would be desirable to fabricate arrays of microlenses in which each microlens approximates a polygonal segment of a spherical contour, and the polygonal microlenses are placed contiguously in a tiling pattern to cover the receptive area, for example in a rectangular or square matrix. However, the reflow method cannot fabricate microlenses which have square or otherwise polygonal borders. Consider a pillar of photoresist, which is allowed to melt and reflow to accomodate a non-circular aperture (shown as a square, projecting onto abcd) as shown in FIG.
2
. The resulting microlens
20
is non-spherical (and in fact, not rotationally symmetrical about its central axis L). The lozenge-like lenslet has been twice cut and a pie-like wedge removed, to clearly show the curvature of the surface in two different planes. The first cutaway
22
is taken parallel to the square side of the lenslet; the second cutaway
24
is in a plane slicing diagonally across the square aperture, corner to corner.
If the lozenge-like microlens of
FIG. 2
is formed by droplet reflow, the surface tension of the reflow droplet will form the microlens surface in a minimum-surface form (constrained by the shape of the square aperture border). Unfortunately, the minimum surface formed by wetting a polygonal aperture is emphatically not a segment of a sphere. This is easily seen in FIG.
2
: the arc
28
which bounds section
22
descends from the zenith z to the side of the lozenge
20
, with elevation h. The arc
30
, makes the same descent, but over a longer run, necessarily longer because the diagonal of a square is always longer than it width. This is not characteristic of a spherical surface (or even a surface with rotational symmetry about a central axis at z). Thus, surface tension does not permit formation of droplets of polygonal borders with spherical surfaces. Aspherical aberrations caused by the square (or generally, polygonal) borders degrade the performance of reflow microlenses in polygonal apertures, by broadening the focal region.
SUMMARY OF THE INVENTION
In view of the above problems, the present invention is a refractive microlens array with improved fill-factor, suitable for integral fabrication on an optoelectronic substrate device, and a method of fabricating the microlens array.
An optically transparent, refracting material is disposed atop the opto-electronic substrate device. Such refracting material has formed therein a plurality of microlenses arranged in a regular, tessellated pattern, which is superimposable on a regular tiling pattern of polygonal cells, attached to one another at defining polygonal borders. The contours of the refractive microlens' surface have rotational symmetry within each cell about an axis, with the symmetric contour maintaining its symmetry substantially at every surface point within the cell's closed polygonal border, thereby substantially covering the cell with a usable, symmetric lens surface (most preferably a partial spherical surface

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High fill-factor microlens array and fabrication method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High fill-factor microlens array and fabrication method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High fill-factor microlens array and fabrication method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604526

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.