High-field open MRI magnet isolation system and method

Electricity: measuring and testing – Particle precession resonance – Spectrometer components

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06774633

ABSTRACT:

BACKGROUND OF INVENTION
The present invention relates generally to a magnetic resonance imaging (MRI) system, and more particularly to an open MRI magnet system having a vibration isolation system.
MRI magnets include resistive and superconductive MRI magnets used in various applications, such as medical diagnostics. Known superconductive MRI magnets include liquid-helium-cooled, cryocooler-cooled, and hybrid-cooled superconductive magnets. Typically, the superconductive coil assembly includes a superconductive main coil surrounded by a thermal shield surrounded by a vacuum enclosure. A cryocooler-cooled MRI magnet typically also includes a cryocooler coldhead externally mounted to the vacuum enclosure, having its first stage in solid conduction thermal contact with the thermal shield, and having its second stage in solid conduction thermal contact with the superconductive main coil. A liquid-helium-cooled MRI magnet typically also includes a liquid-helium vessel surrounding the superconductive main coil with the thermal shield surrounding the liquid-helium vessel. A hybrid-cooled MRI magnet uses both liquid helium (or other liquid or gaseous cryogen) and a cryocooler coldhead, and includes designs wherein the first stage of the cryocooler coldhead is in solid conduction thermal contact with the thermal shield and wherein the second stage of the cryocooler coldhead penetrates the liquid-helium vessel to recondense “boiled-off” helium.
Known resistive and superconductive MRI magnet designs include closed MRI magnets and open MRI magnets. Closed MRI magnets typically have a single, tubular-shaped resistive or superconductive coil assembly having a bore. The coil assembly includes several radially-aligned and longitudinally spaced-apart resistive or superconductive main coils each carrying a large, identical electric current in the same direction. The main coils are thus designed to create a magnetic field of high uniformity within a typically spherical imaging volume centered within the MRI magnet's bore where the object to be imaged is placed.
Open MRI magnets, including “C” shape and support-post MRI magnets, typically employ two spaced-apart coil assemblies with the space between the assemblies containing the imaging volume and allowing for access by medical personnel for surgery or other medical procedures during magnetic resonance imaging. The patient may be positioned in that space or also in the bore of the toroidal-shaped coil assemblies. The open space helps the patient overcome any feelings of claustrophobia that may be experienced in a closed MRI magnet design.
It is also known in open MRI magnet designs to place an iron pole piece in the bore of a resistive or superconductive coil assembly. The iron pole piece enhances the strength of the magnetic field and, by shaping the surface of the pole piece, magnetically shims the magnet improving the homogeneity of the magnetic field. Nonmagnetizable support posts are connected to the face of the pole pieces. It is additionally known in horizontally-aligned open MRI magnets to support the magnet on the floor using two spaced-apart feet attached to each assembly, such feet raising the assemblies to provide room underneath the assemblies for necessary wires, pipes, etc.
The sharpness of an MRI image depends, in part, on the magnetic field in the imaging volume being time-constant and highly uniform. However, the magnetic field in prior art systems suffers time and spatial deformation caused by vibrations from environmental disturbances. Minor relative motions between any of the magnetic elements will cause significant magnetic field disturbances, thus reducing the image quality.
SUMMARY OF INVENTION
In accordance with one preferred aspect of the present invention, there is an open MRI system, comprising an open MRI magnet system, and a vibration isolation system adapted to support the MRI magnet system.
In accordance with another preferred aspect of the present invention, there is provided an open MRI system comprising a first and a second assembly. Each assembly comprises a longitudinally-extending and generally-vertically-aligned axis, at least one superconductive main coil positioned around the axis and carrying a main electric current in a first direction, and a vacuum enclosure enclosing said at least one superconductive main coil. The system further comprises at least one support beam external to the vacuum enclosures, having a first end attached to said first assembly and having a second end attached to said second assembly. The system further comprises a vibration isolation system.
In accordance with another preferred aspect of the present invention, there is provided a method of installing an open MRI system, comprising measuring environmental disturbances and vibrations at a first site, and providing the open MRI system which comprises a vibration isolation system and an open magnet system. The method further comprises selecting the vibration isolation system based on the measuring step, and installing the MRI system at the first site.
In accordance with another preferred aspect of the present invention, there is provided a method of retrofitting a preexisting open MRI system comprising attaching a vibration isolation system to the magnet system of the preexisting MRI system.


REFERENCES:
patent: 4781363 (1988-11-01), Braun
patent: 5793210 (1998-08-01), Pla et al.
patent: 6160399 (2000-12-01), Radziun et al.
patent: 6169404 (2001-01-01), Eckels
patent: 6181228 (2001-01-01), Laskaris et al.
patent: 6198371 (2001-03-01), Laskaris et al.
patent: 6202492 (2001-03-01), Ohsaki
patent: 6336794 (2002-01-01), Kim
patent: 6375147 (2002-04-01), Radziun et al.
patent: 6433550 (2002-08-01), Kinanen
patent: 1 085 336 (2001-03-01), None
patent: 1 231 477 (2002-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High-field open MRI magnet isolation system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High-field open MRI magnet isolation system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-field open MRI magnet isolation system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3361347

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.