Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Include electrolyte chemically specified and method
Reexamination Certificate
1999-10-18
2001-11-13
Kalafut, Stephen (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
Current producing cell, elements, subcombinations and...
Include electrolyte chemically specified and method
C429S324000, C429S188000
Reexamination Certificate
active
06316141
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to electrochemical cells utilizing a non-aqueous liquid electrolyte with an intercalation cathode, and more particularly, to electrochemical cells utilizing a non-aqueous liquid electrolytic solution, an intercalation cathode and a magnesium anode.
Rechargeable, high energy density electrochemical cells of various kinds are known. Such cells usually consist of a transition metal oxide or chalcogenide cathode-active material, an anode-active alkali metal or alkali metal intercalation compound, and an electrolytic solution containing a dissolved alkali-based salt in an aprotic organic or inorganic solvent or polymer.
Theoretically, a rechargeable cell is capable of charging and discharging indefinitely, however, in practice such performance is unattainable. The degradation mechanisms of the various anodes, cathodes and electrolytes are complex and are reviewed in the general literature.
Two basic types of cathodes are appropriate for a battery system that is rechargeable at ambient temperatures. A liquid cathode can be used, allowing reactions to take place with facility. Liquid cathodes are also advantageous in that thin films or crusts forming on the surface of the cathode tend to crack, such that the cathode activity remains high over the course of the cycling. The mobility of the cathodic material is a liability, however, in that contact with the anode short-circuits the cell. Thus, an electrochemical cell with a liquid cathode requires protective, insulating films on the anode.
A solid cathode must be insoluble in the electrolyte, and must be able to receive and release a charge-compensating ion in a substantially reversible and fast manner. A prime example of a solid cathode of this variety is an intercalation cathode. Intercalation chemistry focuses on the insertion of ions or neutral molecules into an inorganic or organic matrix. In a typical intercalation cathode, cations dissolved in the electrolytic solution are inserted into the inorganic matrix structure.
One type of intercalation materials of particular importance is known as Chevrel-phase material, or Chevrel compounds. Chevrel compounds contain an invariant portion consisting of molybdenum and a chalcogen—sulfur, selenium, tellurium, or mixtures thereof. The invariant portion is generally of the formula Mo
6
T
n
, where T represents the chalcogen and n is usually about 8. The unique crystal structure of Chevrel-phase materials allows the insertion of one or more metal ions in a reversible, partially-reversible, or irreversible fashion. The stoichiometry of the intercalation compound can be represented as M
x
Mo
6
T
n
, where M represents the intercalated metal and x may vary from 0 (no intercalated metal) to 4 or less, depending on the properties of the particular metal.
The intercalation of metal ions into the Chevrel compound releases energy. Since the process is partially or fully reversible, these compounds are particularly suitable as electrodes in electrochemical cells. For example, lithium, the predominant intercalation ion, can be removed from the Chevrel compound by the application of electrical energy. The energy is released as electrical energy upon reintercalation.
The cathode-active material in the high energy density, rechargeable electrochemical cells must be paired with a suitable anode-active material, which is most commonly made of an active metal such as alkali metals. However, the performance of a particular anode-cathode couple is strongly influenced by the nature of the electrolyte system. Certain non-aqueous electrolytes are known to perform well with a particular anode-cathode couple and be ineffective or significantly less effective with other anode-cathode couples, because of reaction between the components causes degradation over time. As a result, much of the prior art relates to the cathode-active material, the anode-active material and the electrolyte not only as independent entities, but also as units within an appropriate battery system.
U.S. Pat. No. 4,104,451 to Klemann et al. discloses reversible batteries with an alkali metal anode, a chalcogenide cathode, and organometallic alkali metal salts in organic solvents as the electrolyte system. Non-aqueous electrolyte systems containing alkali metal salts of organic boron-based or aluminum-based anions are disclosed.
Organoborate salts of alkali metals represented by the formula:
are disclosed in U.S. Pat. No. 4,511,642 to Higashi et al., wherein R1-R4 are organic radicals selected from the following groups: alkyl, aryl, alkenyl, cycloalkyl, allyl, heterocyclic, and cyano, and M
+
represents an alkali metal ion.
U.S. Pat. No. 4,139,681 describes cells containing electrolytically active metal salt complexes having the formula ZMR
n
X
i
, wherein Z is a metal from a group containing aluminum, the Rs are specified haloorganic radicals, the Xs are selected from various halides, alkyls, aryls, alkaryls and aralkyls. M is specified to be an alkali metal, with lithium being the preferred embodiment.
U.S. Pat. No. 4,542,081 to Armand et al. describes solutions for the constitution of solid electrolyte materials of electrochemical generators. The compound is of the formula:
(
R−C≡C
)
4
Z
−
, M
+
in which Z is a trivalent element capable of entering into 4-coordination, such as aluminum, and R represents groups which are non-proton donors. M is specified to be an alkali metal.
The prior art described above, including U.S. Pat. Nos. 4,104,451, 4,511,642, 4,139,681 and 4,542,081, specifies that M is an alkali metal. The use of an alkaline earth metal anode such as magnesium would appear disadvantageous relative to the use of an alkali metal such as lithium because alkali metal anodes are much more readily ionized than are alkaline earth metal anodes. In addition, on recharge the cell must be capable of re-depositing the anode metal that was dissolved during discharge, in a relatively pure state, and without the formation of deposits on the electrodes.
However, there are numerous disadvantages to alkali batteries. Alkali metals, and lithium in particular, are expensive. Alkali metals are highly reactive. Alkali metals are also highly flammable, and fire due to the reaction of alkali metals with oxygen or other active materials is extremely difficult to extinguish. Lithium is poisonous and compounds thereof are known for their severe physiological effects, even in minute quantities. As a result, the use of alkali metals requires specialized facilities, such as dry rooms, specialized equipment and specialized procedures.
In contradistinction, magnesium metal and aluminum metal are easy to process. The metals are reactive, but undergo rapid passivation of the surface, such that the metals are highly stable. Both magnesium and aluminum are inexpensive relative to the alkali metals.
U.S. Pat. No. 4,894,302 to Hoffman et al. discloses an electrochemical cell having an intercalation cathode, an alkaline earth anode, and a non-aqueous liquid electrolyte containing an organic solvent and an electrolytically active, organometallic alkaline earth metal salt represented by the formula:
wherein Z is boron or aluminum; R1-R4 are radicals selected from the following groups: alkyl, aryl, alkaryl, aralkyl, alkenyl, cycloalkyl, allyl, heterocyclic alkyl, and cyano; and M represents an alkaline earth metal such as magnesium. The radicals can be inertly substituted with substituents that have no detrimental effect upon the electrolytic properties of the electrolyte composition with respect to effectiveness in an electrochemical cell, such as halogenated or partially halogenated derivatives of the above groups. While exhaustive care is taken to disclose a broad range of organic radicals and halogenated organic radicals, bonding the metallic species of the anion (Z) to another inorganic species is not considered.
U.S. Pat. No. 5,491,039 describes a solid, single-phase electrolyte containing a solid polymeric matrix and an organometallic ion salt represented by the form
Aurbach Doron
Gizbar Chaim
Gofer Yosef
Schechter Alexander
Zhonghua Lu
Alejandro R.
Bar Ilan University
Friedman Mark M.
Kalafut Stephen
LandOfFree
High-energy, rechargeable, electrochemical cells with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High-energy, rechargeable, electrochemical cells with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-energy, rechargeable, electrochemical cells with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2580961