High-energy, high-frequency pulse defibrillator

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06633778

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to an apparatus and a method for treating cardiac arrhythmia or fibrillation, and more particularly, to a defibrillator system that employs high-frequency, high-energy pulses to correct arrhythmia or fibrillation.
Throughout this specification, the term “pulse” is used to describe a signal having an on duration during which a waveform having an appreciable voltage level is present. The waveform defining the pulse may be a dc waveform, e. g., a discharge curve of a capacitor, or a symmetric waveform, e. g., a sine wave.
Electrical energy is applied to patients for many reasons, two of which are to ablate cardiac tissue and to defibrilate the heart. In ablation, energy is applied to cause targeted tissue to increase in temperature until the tissue is no longer viable. This approach is taken in terminating arrhythmias of the heart. It has been found that applying ablation energy having a substantial dc component can cause the heart to fibrillate.
As is known to those skilled in the art, “fibrillation” is a condition in which individual muscle fibers quiver or spontaneously contract. In an atrium of the heart, it is indicated by extremely rapid, incomplete contractions of the atria resulting in fine, rapid, irregular, and uncoordinated movements. In a ventricle, it is a condition resulting in rapid, tremulous, and ineffectual contractions of the ventricles. In both cases, the heart is unable to pump necessary amounts of blood to sustain the patient. Fibrillation is to be avoided and thus, avoiding the application of energy with a substantial dc component to a non-fibrillating heart is recommended.
Defibrillator systems deliver a high voltage electrical counter shock to the heart in an attempt to correct or convert a detected cardiac arrhythmia or fibrillation. The typical defibrillator system includes a capacitor system that produces a pulse defined by a trapezoidal or exponential decay waveform. This pulse is delivered to the heart through electrodes. It is hoped that such a counter shock will allow the heart's normal pacemaker to take over.
A defibrillator system may be an external or internal device. An external defibrillator system applies energy to a patient through electrode pads. In an external defibrillator, a shock wave of approximately 200-400 joules is discharged across the chest through a pair of electrode pads positioned on the chest. An internal defibrillator system applies energy through an implanted device that includes a capacitor having leads terminating in the heart. In an internal defibrillator, a shock wave of approximately 40-80 joules is discharged through the heart.
In a typical defibrillator system, the pulses applied to the heart may be in the form of a monophasic or a biphasic pulse. As shown in
FIG. 1
, monophasic pulses comprise a single monotonically decaying electrical waveform that is typically truncated before the defibrillator capacitor system is completely discharged. The monophasic pulse comprises a substantial dc component. As shown in
FIG. 2
, a biphasic pulse comprises a pair of decaying electrical waveforms or phases that are of opposite polarity. As indicated in
FIG. 2
, the biphasic waveform is a non-recurrent, asymmetric waveform having unequal positive and negative portions. Accordingly, the biphasic pulse retains a substantial dc component. To generate a biphasic pulse, a first pulse or phase is discharged from a capacitor system in the same manner as a monophasic pulse and, at the point the first pulse is truncated, a switch circuit connected to the electrodes is used to immediately reverse the discharge polarity of the capacitor system as seen by the electrodes in order to produce the second waveform or phase of the biphasic pulse that is of the opposite polarity.
For either the monophasic or biphasic pulses, the pulse applied to the heart has a substantial dc component. However, it has been found that the application of dc current through the heart causes significant pain to the patient undergoing defibrillation. Therefore, it would be beneficial to a patient if a defibrillation pulse did not contain any appreciable dc component, yet still included enough energy to defibrilate the heart.
Hence, those skilled in the art have recognized a need for a defibrillator system that corrects or converts a detected cardiac arrhythmia or fibrillation in a way less painful than currently available defibrillator systems. The invention fulfills these needs and others.
SUMMARY OF THE INVENTION
Briefly, and in general terms, the invention is directed to an apparatus and a method for correcting or converting a detected cardiac arrhythmia or fibrillation.
In a first aspect, the invention is related to a method of applying energy to a heart, including defribrilating a heart that is in fibrillation. The method includes the step of applying, across the heart, a pulse comprising a high-frequency cyclic waveform having a plurality of cycle groups. The waveform has, during the first cycle group, an initial peak-to-peak voltage sufficient to shock the heart and, during each subsequent cycle group, a subsequent peak-to-peak voltage, the pulse substantially lacking a dc component. The method further includes the step of controlling the total energy delivered to the heart.
In a more detailed aspect of the method, each cycle group comprises at least one cycle of the cyclic waveform. In another aspect, each cycle group has a peak-to-peak voltage less than that of the previous cycle group. In yet another facet, the profile of the cyclic waveform resembles a discharge curve of a capacitor. In another, the initial peak-to-peak voltage of the cyclic waveform and each subsequent peak-to-peak voltage are substantially equal. In further aspects, when the pulse is applied external to the heart, the initial peak-to-peak voltage is between approximately 9000 volts and 10,000 volts and, when the pulse is applied internal to the heart, the initial peak-to-peak voltage is between approximately 1000 volts and 1200 volts. In still other aspects, the total energy is controlled by varying the peak-to-peak voltages and/or by varying the time duration of pulse.
In second aspect, the invention is related to a method of applying a high-energy, high-frequency pulse across a heart for restoring effective cardiac rhythm. The method includes the steps of charging a capacitor having a first terminal and a second terminal to an initial voltage level sufficient to shock the heart, applying the potential at the first terminal of the capacitor to a first cardiac-tissue contact point and applying the potential at the second terminal of the capacitor to a second cardiac-tissue contact point. The method further includes the steps of initiating the discharge of the capacitor and periodically interchanging the potentials at the first and second terminals of the capacitor during discharge of the capacitor to produce a waveform comprising a plurality of cycles each having a positive portion and a negative portion, the waveform substantially lacking a dc component.
In a detailed aspect of the method, the potentials are interchanged at fixed time intervals such that the cycles of the waveform have positive and negative portions of substantially equal time duration. In another aspect of the method, the potentials are interchanged until the capacitor is completely discharged. In another detailed facet of the method, the potentials are interchanged such that the cumulative energy of the positive portions is substantially equal to the cumulative energy of the negative portions. In another aspect, the potentials are interchanged such that, for each cycle, the energy in the positive portion is substantially equal to the energy in the negative portion. In a further aspect, the time duration of one portion of each cycle is greater than the time duration of the other portion of the same cycle. In still another facet, for each cycle, except the last, the potentials are interchanged such that the time duration of the positive portion is substant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High-energy, high-frequency pulse defibrillator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High-energy, high-frequency pulse defibrillator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-energy, high-frequency pulse defibrillator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3128437

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.