High efficiency ski for sailing on snow or ice

Land vehicles – Ski or skate appliance or attachment – Wind sail for propelling or braking skier or skater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S028000, C114S043000

Reexamination Certificate

active

06257620

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to sailing on snow and ice, and in particular, a ski that efficiently utilizes wind energy for propulsion on snow or ice.
On a hypothetically frictionless surface, the wind blows sailing craft (and all other objects) straight downwind with a speed equal to the wind speed. No other course or speed is possible. In the real world, sailing either upwind or across the wind requires reacting the force generated by the wind on the sail against a surface medium such as land, water, snow or ice. One measure of sailing efficiency is the Foehn number, defined herein as the speed of the sailing craft relative to the speed of the wind. Sailing efficiency increases as the ratio of the lateral force to the drag force of the sailing craft increases, where the lateral force is defined as the force generated by the reaction of sailing craft on the surface medium perpendicular to the direction of travel and the drag force is defined as the resistance in the direction of travel. Hyperwind sailing at Foehn 3 (that is, sailing at three times faster than the wind speed) is readily achieved on sharpened metal blades that are capable of very high lateral/drag force ratios when sliding on smooth ice.
Sailing craft designed to sail on snow have been less successful because of the severe demands required of a sailing ski. The ski must provide vertical lift to support the combined weight of the sailor(s), ski(s) and rig. The ski must also generate the necessary lateral force to counteract the sail forces. In order to achieve high Foehn numbers, the ski must accomplish both tasks with minimum drag in the direction of travel.
Specialized sailboards, monoskis, snowboards as well as iceboats and other boards fitted with a plurality of skis have been invented for sailing on snow or ice but are deficient to varying degrees in performance, stability or control. Iceboats fitted with a plurality of conventional downhill skis for sailing on snow are so inferior in performance to blades on ice that they seldom exceed Foehn 1 and often cannot turn through the eye of the wind without coming to a stop. Inadequate lateral resistance inherent in some of these designs can be dangerous when it results in sudden and unpredictable spinout at high speed.
Many of these inadequacies may be attributed to the use of conventional downhill skis for purposes for which they were not designed. Downhill skis are elongated planar structures that are designed to provide the vertical lift required to support the weight of a skier in snow while simultaneously minimizing the drag opposing the skier's motion. Unlike sailing craft that require a continuous lateral force or side load to balance sail force, downhill skis often support little or no side load even when turning. The lateral force required for skiing across the fall line is achieved by edging or tilting the skis uphill about their longitudinal axes with the legs or ankles. A turn is initiated by tilting the skis into the direction of the turn. The turning radius is controlled by a complex interaction of ski camber, ski flex and sidecut. Because the tip and the tail of the ski provide more grip on the snow than the center that is cut away, the ski bends into a curve that facilitates turning. Skis with more flex and more sidecut have shorter turning radii. Sidecut is detrimental when travelling in a straight line, however, because skis with greater turning ability produce higher drag.
U.S. Pat. No. 5,451,078 and WO9408670 both describe mechanisms for attaching an articulating sailboard sail to the front of a pair of downhill skis. In both inventions, the skis are worn using conventional ski boots. Lateral force is generated by simultaneously tilting both skis to counteract the sail force. Although each ski operates as designed for skiing across the fall line, the drag is higher than optimum because of the sidecut. This configuration is also uncomfortable because it requires the sailor's feet to be aligned in the direction of travel while the upper body is twisted almost 90 degrees to hold the sail. It may also be unstable and dangerous in the event of a fall because the sail attachments impose additional constraints on the relative motion of the skier's feet.
U.S. Pat. No. 4,601,488 and U.S. 5,931,504 disclose two monoski configurations utilizing a sailboard sail attached to the front of a single ski. In these inventions, lateral force is also generated by tilting the ski opposite to the sail force. The monoski configuration may be more comfortable on a reach because the sailor stands with feet pointed across the direction of travel. With only one ski, performance may be enhanced while stability, control and safety problems are exacerbated. In general, monoskis must stop to change direction.
Numerous other attempts have been made to sail on conventional skis and snowboards with a variety of add-on keels, blades or fins. Patent EP0110798 discloses a snowboard with an central rib like an integral keel used in a similar configuration to a monoski. Patent DE3036503 describes a sailboard with rear mounted fins that is also sailed like a monoski. Although probably more stable than a monoski, these inventions likely produce higher drag.
Other configurations have been disclosed that use pairs of downhill skis in a fixed orientation. Patent FR2610837 describes two skis rigidly attached to a central platform that uses an articulating sail. U.S. Pat. No. D 281769 describes a 3-ski (iceboat) configuration using a pair of fixed parallel skis with one central steering ski.
With two rigid skis, lateral force is often generated by fixing one ski with a positive tilt and the second ski with negative tilt of equal magnitude. So oriented, only one ski of each pair effectively produces lateral force while both skis produce drag. The resulting lateral to drag force ratio is poor. The fixed orientation of the skis also inhibits effective turning of the sailing craft because only one ski can flex as designed for skiing. Turning is further inhibited because a conventional downhill ski has both camber and sidecut that causes the tip and tail to dig into the snow and ice when turning.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a high efficiency ski for sailing on snow and ice. The invention comprises a ski with a minimum resistance in the direction of travel, maximum resistance to slippage in the lateral or cross-travel direction and sufficient lift in the vertical direction to support the weight of the sailor and sailing apparatus. A high lateral/drag force ratio is achieved by the shape of the ski, using a ski with greater thickness than a conventional downhill ski. In a preferred embodiment the cross-section of the ski is triangular and the shape is longitudinally constant. Other substantially triangular shapes that optimize lateral/drag ratios fall within the scope of this patent. The surface of the ski in contact with the ice and snow is made from or treated with a low friction material. To facilitate turning, the ski is curved longitudinally in the opposite sense to the camber of a conventional alpine ski. The lower sliding surface rises both forwardly and rearwardly from the center of the ski. The tip can be a thin shovel, like the tip of a conventional alpine ski, or the tip can have a v-shaped bottom like the bow of a boat with deadrise. Deadrise is a marine term defined here as the angle with the horizontal made by the outboard rise of the bottom at any cross-section.
The ski incorporates a sharpened edge or one or a plurality of sharpened blades near the central part of the ski to improve the lateral/drag ratio on ice. The blade(s) can be an integral part of the ski or can be attached separately to the ski. The ski can be constructed of metal, plastic, ceramic or wood or any combination of these materials or any other material with sufficient strength to withstand the loads imposed by sailing at high speeds over rough terrain. The ski can have an internal core like a downhill ski or can be a h

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High efficiency ski for sailing on snow or ice does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High efficiency ski for sailing on snow or ice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High efficiency ski for sailing on snow or ice will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2461177

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.