High efficiency replicated x-ray optics and fabrication method

X-ray or gamma ray systems or devices – Specific application – Diffraction – reflection – or scattering analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06278764

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to x-ray optical devices, particularly devices having a tubular shape, and more particularly to high efficiency replicated x-ray optics and a method of fabrication using a super-polished mandrel.
2. Description of Related Art
X-ray optical devices are used to change the propagation path of travel of x-rays. These devices can also serve to preferentially select x-rays of a desired wavelength range from a broader band of wavelengths. X-ray optical elements primarily use the mechanism of reflection, in contrast to visible light optics that commonly use refraction. To be efficient, x-ray mirrors must have a surface smoothness on the scale of the x-ray wavelength. Since typical x-ray wavelengths are 1-100 Å for these applications, the surface must be smooth on the atomic scale. To provide such a smooth surface is an exceedingly difficult and time-consuming procedure.
In 1952, Wolter proposed the application of a double specular reflection mirror system having a closed surface for focusing of x-rays. This structure was substantially more complex than previous optics and presented serious fabrication difficulties. First attempts to produce Wolter optics were initiated in the 1960's using electrodeposition on negative forms due to the closed surface of these optics. These replication attempts were unsuccessful as very poor figure and surface quality were achieved. In the 1980's, efforts were reinitiated for the development of thin shell structures for space telescopes. These negative form electrodeposition replication efforts have been used in the Czech Republic, Italy, and the United States. Several replication fabricated Wolter structures have been flown in space. These mirrored surfaces achieved the figure and roughness values approaching 15 Å rms that are adequate for those applications, but not for applications requiring greater resolution and using shorter x-ray wavelengths.
The replication technique has the potential of lower cost and ease of manufacture. The cost of internally polishing and coating the surface of a tubular optic (typical length 10 cm, average diameter 2 cm) and achieving the smooth internal surface finish required is on the order of $500,000 and requires about one year to fabricate. Each optic device produced would have similar cost and time considerations. By comparison, the use of a negative form mandrel reduces the cost by a factor of 10-100 per mandrel for substrate preparation during development, with further significant cost reductions in the manufacturing stage. In view of the demonstrated effectiveness of the replication approach in the fabrication of moderate resolution Wolter space telescopes, research was directed towards the use of replicated optics for x-ray microscopes used in inertial confinement fusion studies and collimators for x-ray proximity lithography.
A primary problem with replicated optics has been achieving smoothness on the replicated part. Past efforts have not been able to achieve a roughness less than 12-15 Å rms. This resulted from the low strength of the layer directly in contact with the mandrel and the lack of control of the adhesion of this layer to the mandrel. Parting of the optic from the mandrel causes plastic deformation of the reflecting layer and degradation of the smoothness of the reflecting surface. The decrease in efficiency and attainable imaging resolution resulting from a surface roughness of 12-15 Å rms is unacceptable.
Thus, there is a need for a method to make x-ray optics with a surface roughness less than 12 Å rms. The present invention is based on the recognition that magnetron sputtering deposition can be used, even though previously sputter deposited replicated optics have been of poor quality. The fabrication method of the present invention, based on supporting multilayer structures and a special parting layer, has been developed to produce strong stress-relieved reflecting surfaces with supporting shells that do not deform during the separation process and consequently produce super-smooth surfaces comparable to that of the initial mandrel.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide replicated x-ray optics having a surface roughness of less than 12 angstroms rms and a method for reproducibly fabricating these x-ray optics with a super-smooth surface. A further object of the invention is to provide x-ray optical devices that have a tubular shape, open at both ends, and an interior surface highly reflective to x-rays within a specified wavelength band.
Another object of the invention is to provide x-ray optical devices having shapes that are truncated paraboloidal, ellipsoidal, hyperboloidal, or polynomial shells of revolution.
Another object of the invention is to provide a method of fabricating tubular shaped x-ray optics by dc or rf sputter deposition of reflecting layers onto a super-polished reusable mandrel, strengthening the reflecting layers by a sputter deposited multilayer, then further supporting this structure with a low residual stress electrodeposited layer, and separating the layered optical device from the mandrel, resulting in a tubular shell with an interior surface having the shape and surface smoothness of the mandrel.
A further object of the invention is to provide increased strength to the reflecting layer resulting from a supporting multilayer, which enhances the ability to part the replica from the mandrel without degradation in surface roughness and performance.
Another object of the invention is to provide a parting layer that maintains or enhances the smoothness of the mandrel, provides uniform adhesion, and substantially decreases the adhesion of the reflecting surface material to the mandrel, and reduces the forces required to part the replica structure and thus the potential for increased surface roughness.
Yet another object of the invention is to provide a tubular shaped optic wherein the inner reflecting surface can be composed of either a single layer grazing reflection mirror or a resonant multilayer mirror, where the wavelength bandpass of the multilayer mirror can be used to select a specific band of x-ray energies.
The invention involves high efficiency replicated x-ray optics and the method of fabrication. The x-ray optical device has a tubular shape that is open at both ends, with the interior surface being highly reflective to x-rays within a wavelength band of interest. A beam of x-rays enters one end, undergoes a single reflection at the interior surface, and exits from the other end with a different direction of travel. The shapes of the optics are truncated paraboloidal, ellipsoidal, hyperboloidal, or polynomial shells of revolution. Optics having a combination of these shapes can also be fabricated from a single mandrel.
The tubular optical devices are fabricated using a reusable mandrel with a super-polished surface. The replicated optic is deposited by dc or rf sputter deposition of a reflecting layer or layers onto the mandrel surface, and thereafter the reflecting layers are strengthened by a sputter deposited multilayer, and then this structure is further supported with a low residual stress electrodeposited layer. A special parting layer of sputter deposited amorphous carbon may be deposited on the mandrel surface prior to deposition of the reflecting structure.
When the layered device is removed from the mandrel, the tubular shell has an inner surface having the shape and surface smoothness of the master form mandrel. Surfaces having a roughness of less than 10 Å rms, and as low as 3-5 Å rms, have been fabricated. The low stress required to part the replica from the mandrel has made possible the maintenance of the surface figure of the mandrel in the replicated part and has also minimized the potential for damage to the mandrel during parting so that multiple replicas can be manufactured from a single mandrel.
The optic elements resulting from the present invention can form single ele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High efficiency replicated x-ray optics and fabrication method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High efficiency replicated x-ray optics and fabrication method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High efficiency replicated x-ray optics and fabrication method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2474997

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.