High efficiency print media products and methods for...

Stock material or miscellaneous articles – Ink jet stock for printing – Plural ink receptive layers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S032240, C428S032280

Reexamination Certificate

active

06599593

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to print media products for receiving printed images thereon. More particularly, the invention described herein involves image-receiving sheet materials incorporating a specialized arrangement of layers and components which cooperate to produce a number of important benefits in a simultaneous fashion including but not limited to a high degree of lightfastness, gloss-control, rapid drying time, and others as discussed below.
Substantial developments have been made in the field of electronic printing technology. A wide variety of highly-efficient printing systems currently exist which are capable of dispensing ink in a rapid and accurate manner. Thermal inkjet systems are especially important in this regard. Printing units using thermal inkjet technology basically involve an apparatus which includes at least one ink reservoir chamber in fluid communication with a substrate (preferably made of silicon [Si] and/or other comparable materials) having a plurality of thin-film heating resistors thereon. The substrate and resistors are maintained within a structure that is conventionally characterized as a “printhead”. Selective activation of the resistors causes thermal excitation of the ink materials stored inside the reservoir chamber and expulsion thereof from the printhead. Representative thermal inkjet systems are discussed in, for example, U.S. Pat. No. 4,771,295 to Baker et al. and U.S. Pat. No. 5,278,584 to Keefe et al. which are both incorporated herein by reference.
The ink delivery systems described above (and comparable printing units using thermal inkjet technology) typically include an ink containment unit (e.g. a housing, vessel, or tank) having a self-contained supply of ink therein in order to form an ink cartridge. In a standard ink cartridge, the ink containment unit is directly attached to the remaining components of the cartridge to produce an integral and unitary structure wherein the ink supply is considered to be “on-board” as shown in, for example, U.S. Pat. No. 4,771,295 to Baker et al. However, in other cases, the ink containment unit will be provided at a remote location within the printer, with the ink containment unit being operatively connected to and in fluid communication with the printhead using one or more ink transfer conduits. These particular systems are conventionally known as “off-axis” printing units. A representative, non-limiting off-axis ink delivery system is discussed in, for example, U.S. Pat. No. 5,975,686 to Hauck et al. which is also incorporated herein by reference. The present invention as described below (which involves a plurality of novel ink-receiving print media products) is applicable to both on-board and off-axis systems (as well as any other types which include at least one ink containment vessel that is either directly or remotely in fluid communication with a printhead containing one or more ink-ejecting resistors therein). Furthermore, while the print media materials outlined herein will be discussed with primary reference to thermal inkjet technology, it shall be understood that they may be employed in connection with other ink delivery systems and methods including but not limited to piezoelectric drop devices of the variety disclosed in U.S. Pat. No. 4,329,698 to Smith and dot matrix units of the type described in U.S. Pat. No. 4,749,291 to Kobayashi et al., as well as other comparable and diverse systems designed to deliver ink using one or more ink delivery components/assemblies. In this regard, the claimed print media products and methods shall not be considered “print method-specific”.
In order to effectively generate printed images using the various ink transfer techniques and systems discussed herein (again, with primary but not exclusive reference to thermal inkjet technology), ink-receiving print media materials must be employed which are capable of efficiently accomplishing this goal. Ideally, to achieve maximum efficiency, print media materials should be able to provide numerous advantages and benefits including but not limited to (1) a high level of light-fastness, with the term “light-fastness” being generally defined herein to involve the capacity of a print media product to retain images thereon in a stable fashion without substantial fading, blurring, distortion, and the like over time in the presence of natural or made-made light; (2) rapid drying times in order to avoid smudging and image deterioration immediately after printing is completed due to contact with physical objects and the like; (3) the fast and complete absorption of ink materials in a manner which avoids image distortion caused by color bleed (e.g. the undesired migration of multi-colored ink components into each other) and related difficulties; (4) a highly water-fast character (with the term “water-fast” being generally defined to involve the ability of a print media product to produce a stable image with little or no fading, run-off, distortion, and the like when the image is placed in contact with moisture); (5) the generation of “crisp” images with a distinct and defined character; (6) low material costs which enable the print media products of interest to be employed for mass market home and business use; (7) excellent levels of image stability and retention over long time periods; (8) minimal complexity from a production and material-content standpoint which leads to reduced fabrication costs and greater product reliability; and (9) a high level of gloss-control which is achievable in a rapid and effective manner during production through only minor adjustments in the manufacturing process. The term “gloss-control” is generally defined herein to involve the ability, during fabrication, to generate a print media product having high-gloss levels for the generation of photographic quality images if desired, a semi-gloss character if needed, or other gloss parameters. In particular, the manufacturing process should be highly controllable in order to achieve a variety of different gloss characteristics without requiring major adjustments in processing steps and materials.
In the past, many different print media sheets using a wide variety of different ingredients, production techniques, layering arrangements, and the like have been fabricated for a multitude of specific purposes. For example, as generally discussed in the representative patent documents listed below, the following items have been investigated and/or employed in the production of print media products to achieve a broad spectrum of goals: modifications in the types of materials being used, the amounts of such materials, the relative particle sizes thereof, the particular layering arrangements being chosen, and the adjustment of various factors including pore size, pore volume, layer thickness, particle orientation, surface roughness, surface rigidity, air permeability, and other similar parameters. Representative patents (incorporated herein by reference) which discuss at least one or more of the above-listed factors (and others) are as follows: U.S. Pat. Nos. 4,391,850; 4,440,827; 4,446,174; 4,474,847; 4,567,096; 4,623,557; 4,642,247; 4,780,356; 4,785,313; 4,879,166; 5,008,231; 5,013,603; 5,091,359; 5,104,730; 5,194,347; 5,266,383; 5,354,634; 5,397,619; 5,463,178; 5,472,773; 5,514,636; 5,576,088; 5,605,750; 5,609,964; 5,635,297; 5,691,046; 5,723,211; 5,753,588; 5,755,929; 5,804,293; 5,863,648; 5,882,388; 5,912,071; 5,928,789; 5,962,124; 5,965,244; 5,977,019; 5,985,076; and 6,063,489.
Notwithstanding the various media products discussed in the above-listed patents and prior activities in this field, a need remains for print media materials (namely, ink-receiving sheets) which are able to capture and retain clear, distinct, and accurate images thereon that are likewise characterized by a number of specific benefits in combination. These benefits include but are not limited to items [1]-[9] recited above both on an individual and simultaneous basis in a substantially automatic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High efficiency print media products and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High efficiency print media products and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High efficiency print media products and methods for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3017779

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.